Lagrangian submanifolds in the homogeneous nearly Kähler S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^3 \times {\mathbb {S}}^3$$\end{document}

被引:0
|
作者
Bart Dioos
Luc Vrancken
Xianfeng Wang
机构
[1] KU Leuven,Departement Wiskunde
[2] Université de Valenciennes,LAMAV
[3] Nankai University,School of Mathematical Sciences and LPMC
关键词
Nearly Kähler manifold; Lagrangian submanifolds; Constant sectional curvature; Lagrangian sphere; Lagrangian torus; Primary 53C42; Secondary 53D12;
D O I
10.1007/s10455-017-9567-z
中图分类号
学科分类号
摘要
In this paper, we investigate Lagrangian submanifolds in the homogeneous nearly Kähler S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^3 \times \mathbb {S}^3$$\end{document}. We introduce and make use of a triplet of angle functions to describe the geometry of a Lagrangian submanifold in S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^3 \times \mathbb {S}^3$$\end{document}. We construct a new example of a flat Lagrangian torus and give a complete classification of all the Lagrangian immersions of spaces of constant sectional curvature. As a corollary of our main result, we obtain that the radius of a round Lagrangian sphere in the homogeneous nearly Kähler S3×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^3 \times \mathbb {S}^3$$\end{document} can only be 23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{\sqrt{3}}$$\end{document} or 43\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{4}{\sqrt{3}}$$\end{document}.
引用
收藏
页码:39 / 66
页数:27
相关论文
共 50 条