共 14 条
In-line near-infrared analysis of milk coupled with machine learning methods for the daily prediction of blood metabolic profile in dairy cattle
被引:0
|作者:
Diana Giannuzzi
Lucio Flavio Macedo Mota
Sara Pegolo
Luigi Gallo
Stefano Schiavon
Franco Tagliapietra
Gil Katz
David Fainboym
Andrea Minuti
Erminio Trevisi
Alessio Cecchinato
机构:
[1] University of Padua,Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE)
[2] Afimilk Ltd.,Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences
[3] Università Cattolica del Sacro Cuore,undefined
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Precision livestock farming technologies are used to monitor animal health and welfare parameters continuously and in real time in order to optimize nutrition and productivity and to detect health issues at an early stage. The possibility of predicting blood metabolites from milk samples obtained during routine milking by means of infrared spectroscopy has become increasingly attractive. We developed, for the first time, prediction equations for a set of blood metabolites using diverse machine learning methods and milk near-infrared spectra collected by the AfiLab instrument. Our dataset was obtained from 385 Holstein Friesian dairy cows. Stacking ensemble and multi-layer feedforward artificial neural network outperformed the other machine learning methods tested, with a reduction in the root mean square error of between 3 and 6% in most blood parameters. We obtained moderate correlations (r) between the observed and predicted phenotypes for γ-glutamyl transferase (r = 0.58), alkaline phosphatase (0.54), haptoglobin (0.66), globulins (0.61), total reactive oxygen metabolites (0.60) and thiol groups (0.57). The AfiLab instrument has strong potential but may not yet be ready to predict the metabolic stress of dairy cows in practice. Further research is needed to find out methods that allow an improvement in accuracy of prediction equations.
引用
收藏
相关论文