Generalized Localization for Spherical Partial Sums of Multiple Fourier Series

被引:0
|
作者
R. R. Ashurov
机构
[1] National University of Uzbekistan Named after Mirzo Ulugbek,
[2] Romanovskii Uzbekistan Academy of Science Institute of Mathematics,undefined
[3] Uzbekistan Academy of Science,undefined
来源
Doklady Mathematics | 2019年 / 100卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Abstract—In this paper the generalized localization principle for the spherical partial sums of the multiple Fourier series in the L2 class is proved, that is, if f ∈ L2(TN) and  f = 0 on an open set Ω ⊂ TN, then it is shown that the spherical partial sums of this function converge to zero almost-everywhere on Ω. It has been previously known that the generalized localization is not valid in Lp(TN) when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leqslant p < 2$$\end{document}. Thus the problem of generalized localization for the spherical partial sums is completely solved in Lp(TN), p ≥ 1: if p ≥ 2 then we have the generalized localization and if p < 2, then the generalized localization fails.
引用
收藏
页码:505 / 507
页数:2
相关论文
共 50 条