An implicational logic for orthomodular lattices

被引:1
|
作者
Chajda I. [1 ]
Cirulis J. [2 ]
机构
[1] Department of Algebra and Geometry, Faculty of Science, Palacký University, 17. listopadu, 12, Olomouc
[2] Institute of Mathematics and Computer Science, University of Latvia, Raina b., 29, Riga
来源
Acta Scientiarum Mathematicarum | 2016年 / 82卷 / 3-4期
关键词
Algebraizable logic; Axiom system; Derivation rule; Dishkant implication; Logic of quantum mechanics; Orthomodular implication algebra; Orthomodular lattice; Semiorthomodular lattice; Weak BCK-algebra;
D O I
10.14232/actasm-015-813-6
中图分类号
学科分类号
摘要
Orthomodular lattices were introduced to get an algebraic description of the propositional logic of quantum mechanics. In this paper, we set up axiomatization of this logic as a Hilbert style implicational logical system L, i.e., we present a set of axioms and derivation rules formulated in the signature {→, 0}. The other logical operations ∨, ∧, ¬ are expressed in terms of implication (which is the so-called Dishkant implication) and falsum. We further show that the system L is algebraizable in the sense of Blok and Pigozzi, and that orthomodular lattices provide an equivalent algebraic semantics for it. © 2016 Bolyai Institute, University of Szeged.
引用
收藏
页码:383 / 394
页数:11
相关论文
共 50 条
  • [1] Negative Translations of Orthomodular Lattices and Their Logic
    Fussner, Wesley
    St John, Gavin
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (343): : 37 - 49
  • [2] Orthomodular Lattices
    Madra, Elzbieta
    Grabowski, Adam
    [J]. FORMALIZED MATHEMATICS, 2008, 16 (03): : 277 - 282
  • [3] Subalgebras of Orthomodular Lattices
    John Harding
    Mirko Navara
    [J]. Order, 2011, 28 : 549 - 563
  • [4] A Note on Orthomodular Lattices
    Bonzio, S.
    Chajda, I.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (12) : 3740 - 3743
  • [5] Weakly Orthomodular and Dually Weakly Orthomodular Lattices
    Ivan Chajda
    Helmut Länger
    [J]. Order, 2018, 35 : 541 - 555
  • [6] ORTHOMODULAR LATTICES WHOSE MACNEILLE COMPLETIONS ARE NOT ORTHOMODULAR
    HARDING, J
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (01): : 93 - 103
  • [7] PROFINITE ORTHOMODULAR LATTICES
    CHOE, TH
    GREECHIE, RJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) : 1053 - 1060
  • [8] COMPLETIONS OF ORTHOMODULAR LATTICES
    BRUNS, G
    GREECHIE, R
    HARDING, J
    RODDY, M
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1990, 7 (01): : 67 - 76
  • [9] Decidability in orthomodular lattices
    Hycko, Marek
    Navara, Mirko
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (12) : 2239 - 2248
  • [10] INDEXED ORTHOMODULAR LATTICES
    JANOWITZ, MF
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (01) : 28 - &