Penalty-Free Any-Order Weak Galerkin FEMs for Elliptic Problems on Quadrilateral Meshes

被引:0
|
作者
Jiangguo Liu
Simon Tavener
Zhuoran Wang
机构
[1] Colorado State University,Department of Mathematics
来源
关键词
Arbogast–Correa spaces; Elliptic boundary value problems; Penalty-free; Quadrilateral meshes; Weak Galerkin; 65N15; 65N30; 76S06;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a family of weak Galerkin finite element methods for elliptic boundary value problems on convex quadrilateral meshes. These new methods use degree k≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 0$$\end{document} polynomials separately in element interiors and on edges for approximating the primal variable. The discrete weak gradients of these shape functions are established in the local Arbogast–Correa ACk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AC_k $$\end{document} spaces. These discrete weak gradients are then used to approximate the classical gradient in the variational formulation. These new methods do not use any nonphysical penalty factor but produce optimal-order approximation to the primal variable, flux, normal flux, and divergence of flux. Moreover, these new solvers are locally conservative and offer continuous normal fluxes. Numerical experiments are presented to demonstrate the accuracy of this family of new methods.
引用
收藏
相关论文
共 50 条