Four series of ω-N-quinonyl amino acids were synthesized by Michael-like additions. The quinones include 2-phenylthio-1,4-benzoquinone, 1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone and 2,3-dichloro-1,4-naphthoquinone. These modified amino acids can be used for post chain assembly modifications of biologically active peptides, which target the quinonic drug to a cancer damaged area. The electron-transfer capabilities of the modified amino acids were probed by cyclic voltammetry measurements. The results described in this paper show that the novel N-quinonyl amino acids are effective in producing semiquinone radicals similarly to the unconjugated quinones themselves. A direct relation was found between the first reduction potentials of the quinones and their reactivity towards the ω-amino acids. The successful generation of stable semiquinone radicals by the novel quinone derivatives is a prerequisite for the manifestation of site-directed antitumor activity of corresponding quinone-peptide conjugates.