On the well-posedness for a multi-dimensional compressible viscous liquid–gas two-phase flow model in critical spaces

被引:0
|
作者
Fuyi Xu
Jia Yuan
机构
[1] Shandong University of Technology,School of Science
[2] Beihang University,School of Mathematics and Systems Science
关键词
Local well-posedness; Compressible liquid–gas two-phase flow; Besov spaces; 76T10; 76N10; 35L65; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is dedicated to study of the Cauchy problem for a multi-dimensional (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \geq 2}$$\end{document}) compressible viscous liquid–gas two-phase flow model. We prove the local well-posedness of the system for large data in critical Besov spaces based on the Lp framework under the sole assumption that the initial liquid mass is bounded away from zero.
引用
收藏
页码:2395 / 2417
页数:22
相关论文
共 50 条
  • [1] On the well-posedness for a multi-dimensional compressible viscous liquid-gas two-phase flow model in critical spaces
    Xu, Fuyi
    Yuan, Jia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2395 - 2417
  • [2] WELL-POSEDNESS IN CRITICAL SPACES FOR A MULTI-DIMENSIONAL COMPRESSIBLE VISCOUS LIQUID-GAS TWO-PHASE FLOW MODEL
    Cui, Haibo
    Bie, Qunyi
    Yao, Zheng-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04): : 1395 - 1410
  • [3] WELL-POSEDNESS FOR A MULTIDIMENSIONAL VISCOUS LIQUID-GAS TWO-PHASE FLOW MODEL
    Hao, Chengchun
    Li, Hai-Liang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (03) : 1304 - 1332
  • [4] STRONG WELL-POSEDNESS OF A DIFFUSE INTERFACE MODEL FOR A VISCOUS, QUASI-INCOMPRESSIBLE TWO-PHASE FLOW
    Abels, Helmut
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) : 316 - 340
  • [5] Well-posedness of nonlinear two-phase flow model with solute transport
    Shi, Xueting
    Yuan, Guangwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [6] Well-posedness of a two-phase flow with soluble surfactant
    Bothe, D
    Prüss, J
    Simonett, G
    NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: A SPECIAL TRIBUTE TO THE WORK OF HERBERT AMANN, MICHEL CHIPOT AND JOACHIM ESCHER, 2005, 64 : 37 - 61
  • [8] Well-posedness and Stability of a Multi-dimensional Tumor Growth Model
    Cui, Shangbin
    Escher, Joachim
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (01) : 173 - 193
  • [9] Well-posedness and Stability of a Multi-dimensional Tumor Growth Model
    Shangbin Cui
    Joachim Escher
    Archive for Rational Mechanics and Analysis, 2009, 191 : 173 - 193
  • [10] ON THE WELL-POSEDNESS AND DECAY RATES OF STRONG SOLUTIONS TO A MULTI-DIMENSIONAL NON-CONSERVATIVE VISCOUS COMPRESSIBLE TWO-FLUID SYSTEM
    Xu, Fuyi
    Chi, Meiling
    Liu, Lishan
    Wu, Yonghong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (05) : 2515 - 2559