Grothendieck Enriched Categories

被引:0
|
作者
Yuki Imamura
机构
[1] Osaka University,Department of Mathematics, Graduate School of Science
来源
关键词
Grothendieck category; The Gabriel-Popescu theorem; Enriched category; Dg category; 18E10; 18D20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the notion of Grothendieck enriched categories for categories enriched over a sufficiently nice Grothendieck monoidal category V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document}, generalizing the classical notion of Grothendieck categories. Then we establish the Gabriel-Popescu type theorem for Grothendieck enriched categories. We also prove that the property of being Grothendieck enriched categories is preserved under the change of the base monoidal categories by a monoidal right adjoint functor. In particular, if we take as V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document} the monoidal category of complexes of abelian groups, we obtain the notion of Grothendieck dg categories. As an application of the main results, we see that the dg category of complexes of quasi-coherent sheaves on a quasi-compact and quasi-separated scheme is an example of Grothendieck dg categories.
引用
收藏
页码:1017 / 1041
页数:24
相关论文
共 50 条