The self intersection of an immersion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$i: S^2 \to \mathbb {R}^3$$\end{document} dissects S2 into pieces which are planar surfaces (unless i is an embedding). In this work we determine what collections of planar surfaces may be obtained in this way. In particular, for every n we construct an immersion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$i: S^2 \to \mathbb {R}^3$$\end{document} with 2n triple points, for which all pieces are discs.