Dissecting the 2-sphere by immersions

被引:0
|
作者
Tahl Nowik
机构
[1] Bar-Ilan University,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 127卷
关键词
Immersions of the 2-sphere; 57M99; 57R42;
D O I
暂无
中图分类号
学科分类号
摘要
The self intersection of an immersion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i: S^2 \to \mathbb {R}^3$$\end{document} dissects S2 into pieces which are planar surfaces (unless i is an embedding). In this work we determine what collections of planar surfaces may be obtained in this way. In particular, for every n we construct an immersion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i: S^2 \to \mathbb {R}^3$$\end{document} with 2n triple points, for which all pieces are discs.
引用
收藏
页码:37 / 41
页数:4
相关论文
共 50 条