Multiplicity Results for Nonlinear Nonhomogeneous Robin Problems with Indefinite Potential Term

被引:0
|
作者
Yunru Bai
Nikolaos S. Papageorgiou
Shengda Zeng
机构
[1] Guangxi University of Science and Technology,School of Science
[2] National Technical University,Department of Mathematics
[3] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[4] Nanjing University,Department of Mathematics
[5] Jagiellonian University in Krakow,Faculty of Mathematics and Computer Science
来源
Results in Mathematics | 2023年 / 78卷
关键词
Nonlinear regularity; nonlinear maximum principle; constant sign solutions; nodal solutions; second deformation theorem; critical groups; indefinite potential function; 35J20; 35J60; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Robin problem driven by a general nonhomogeneous differential operator plus an indefinite potential term. The reaction is of generalized logistic type. Using variational tools we prove a multiplicity theorem producing three nontrivial solutions with sign information (positive, negative and nodal). In the particular case of (p, 2)-equations, employing also critical groups, we produce a second nodal solution. Our results extend earlier multiplicity results for coercive problems.
引用
收藏
相关论文
共 50 条
  • [1] Multiplicity Results for Nonlinear Nonhomogeneous Robin Problems with Indefinite Potential Term
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [2] Global Multiplicity of Positive Solutions for Nonlinear Robin Problems with an Indefinite Potential Term
    Eylem Öztürk
    Nikolaos S. Papageorgiou
    [J]. Results in Mathematics, 2024, 79
  • [3] Global Multiplicity of Positive Solutions for Nonlinear Robin Problems with an Indefinite Potential Term
    Ozturk, Eylem
    Papageorgiou, Nikolaos S.
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [4] Nonlinear, Nonhomogeneous Robin Problems with Indefinite Potential and General Reaction
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    [J]. Applied Mathematics & Optimization, 2020, 81 : 823 - 857
  • [5] Nonlinear, Nonhomogeneous Robin Problems with Indefinite Potential and General Reaction
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03): : 823 - 857
  • [6] Multiplicity theorems for nonlinear nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 251 - 289
  • [7] MULTIPLICITY OF SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 601 - 611
  • [8] Nonlinear Robin problems with indefinite potential
    Leonardi, S.
    Onete, Florin, I
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [9] Nonlinear Nonhomogeneous Robin Problems with Superlinear Reaction Term
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. ADVANCED NONLINEAR STUDIES, 2016, 16 (04) : 737 - 764
  • [10] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)