Extension operators for smooth functions on compact subsets of the reals

被引:0
|
作者
Leonhard Frerick
Enrique Jordá
Jochen Wengenroth
机构
[1] Universität Trier,Fachbereich IV
[2] Universidad Politécnica de Valencia,Mathematik
来源
Mathematische Zeitschrift | 2020年 / 295卷
关键词
Extension operator; Spaces of smooth functions; 47A57; 46E25; 46A63;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce sufficient as well as necessary conditions for a compact set K such that there is a continuous linear extension operator from the space of restrictions C∞(K)={F|K:F∈C∞(R)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty (K)=\{F|_K: F\in C^\infty (\mathbb {R})\}$$\end{document} to C∞(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty (\mathbb {R})$$\end{document}. This allows us to deal with examples of the form K={an:n∈N}∪{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=\{a_n:n\in \mathbb {N}\}\cup \{0\}$$\end{document} for an→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_n\rightarrow 0$$\end{document} previously considered by Fefferman and Ricci as well as Vogt.
引用
收藏
页码:1537 / 1552
页数:15
相关论文
共 50 条