Exact kolmogorov-type inequalities with bounded leading derivative in the case of low smoothness

被引:0
|
作者
Babenko V.F. [1 ]
Kofanov V.A. [1 ]
Pichugov S.A. [1 ]
机构
[1] Dnepropetrovsk University, Dnepropetrovsk
关键词
Periodic Function; Differentiable Periodic Function; Leading Derivative; Euler Spline; Unimprovable Inequality;
D O I
10.1023/A:1015226223806
中图分类号
学科分类号
摘要
We obtain new unimprovable Kolmogorov-type inequalities for differentiable periodic functions. In particular, we prove that, for r=2, k=1 or r=3, k=1,2 and arbitrary q, p ∈ [1,∞], the following unimprovable inequality holds for functions x ∈ L∞r : (Figure Presented) where α= min { l-k / r, r-k+1/q / r + 1/p} and (φ is the perfect Euler spline of order r. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:1569 / 1582
页数:13
相关论文
共 40 条