Gesture recognition based on an improved local sparse representation classification algorithm

被引:3
|
作者
Yang He
Gongfa Li
Yajie Liao
Ying Sun
Jianyi Kong
Guozhang Jiang
Du Jiang
Bo Tao
Shuang Xu
Honghai Liu
机构
[1] Wuhan University of Science and Technology,The Key Laboratory of Metallurgical Equipment and Control of Education Ministry
[2] Wuhan University of Science and Technology,Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering
[3] University of Portsmouth,School of Computing
来源
Cluster Computing | 2019年 / 22卷
关键词
Gesture recognition; norm; Sparse representation; Classification algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The sparse representation classification method has been widely concerned and studied in pattern recognition because of its good recognition effect and classification performance. Using the minimized l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} norm to solve the sparse coefficient, all the training samples are selected as the redundant dictionary to calculate, but the computational complexity is higher. Aiming at the problem of high computational complexity of the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} norm based solving algorithm, l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2}$$\end{document} norm local sparse representation classification algorithm is proposed. This algorithm uses the minimum l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2}$$\end{document} norm method to select the local dictionary. Then the minimum l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} norm is used in the dictionary to solve sparse coefficients for classify them, and the algorithm is used to verify the gesture recognition on the constructed gesture database. The experimental results show that the algorithm can effectively reduce the calculation time while ensuring the recognition rate, and the performance of the algorithm is slightly better than KNN-SRC algorithm.
引用
收藏
页码:10935 / 10946
页数:11
相关论文
共 50 条
  • [1] Gesture recognition based on an improved local sparse representation classification algorithm
    He, Yang
    Li, Gongfa
    Liao, Yajie
    Sun, Ying
    Kong, Jianyi
    Jiang, Guozhang
    Jiang, Du
    Tao, Bo
    Xu, Shuang
    Liu, Honghai
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 5): : 10935 - 10946
  • [2] Gesture recognition based on sparse representation
    Miao, Wei
    Li, Gongfa
    Sun, Ying
    Jiang, Guozhang
    Kong, Jianyi
    Liu, Honghai
    [J]. International Journal of Wireless and Mobile Computing, 2016, 11 (04) : 348 - 356
  • [3] An Improved Face Recognition Algorithm Based on Sparse Representation
    Turan, Cemil
    Kadyrov, Shirali
    Burissova, Diana
    [J]. 2018 2ND INTERNATIONAL CONFERENCE ON COMPUTING AND NETWORK COMMUNICATIONS (COCONET), 2018, : 42 - 45
  • [4] SPARSE REPRESENTATION BASED ACTION AND GESTURE RECOGNITION
    Bomma, Sushma
    Favaro, Paolo
    Robertson, Neil M.
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 141 - 145
  • [5] Pulmonary Nodule Classification and Recognition Based on Sparse Representation Algorithm
    Yang, Yang
    Hu, Hongping
    [J]. 2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 402 - 406
  • [6] Face recognition algorithm based on improved kernel sparse representation
    Liu Xia
    Luo Wenhui
    Su Yixin
    [J]. 2019 34RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2019, : 654 - 659
  • [7] Block-Sparse Representation Classification based Gesture Recognition Approach for a Robotic Wheelchair
    Boyali, Ali
    Hashimoto, Naohisa
    [J]. 2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 1133 - 1138
  • [8] Kernel-based sparse representation for gesture recognition
    Zhou, Yin
    Liu, Kai
    Carrillo, Rafael E.
    Barner, Kenneth E.
    Kiamilev, Fouad
    [J]. PATTERN RECOGNITION, 2013, 46 (12) : 3208 - 3222
  • [9] Auto chord recognition based on sparse representation classification and Viterbi algorithm
    [J]. 1600, Science and Engineering Research Support Society (11):
  • [10] IMPROVED COMBINATION OF LBP AND SPARSE REPRESENTATION BASED CLASSIFICATION (SRC) FOR FACE RECOGNITION
    Min, Rui
    Dugelay, Jean-Luc
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,