On the Distribution of a Random Power Series on the Dyadic Half-Line

被引:0
|
作者
M. A. Karapetyants
机构
[1] Moscow Institute of Physics and Technology,
[2] Regional Scientific and Educational Mathematics Center of Southern Federal University,undefined
来源
关键词
dyadic half-line; random variable; distributional density; power series; Walsh functions; Walsh-Fourier transform; refinement equation; 517.512:519.213;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi $\end{document} as a series of the powers of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \lambda\in(0,1) $\end{document}, we address the question of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \lambda $\end{document} such that the density of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi $\end{document} belongs to the space of the function whose modulus is summable on the dyadic half-line. We answer the question for some values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \lambda $\end{document}, and consider the so-called dual problem when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \lambda=\frac{1}{2} $\end{document} is fixed, but the coefficients of the formula for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi $\end{document} have more degrees of freedom. Also we obtain some criteria for the existence of density in terms of the solution of the refinement equation tied directly to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi $\end{document} as well as in terms of the coefficients defining \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \xi $\end{document}.
引用
收藏
页码:1319 / 1329
页数:10
相关论文
共 50 条