On standard Auslander-Reiten sequences for finite groups

被引:0
|
作者
S. Kawata
机构
[1] Department of Mathematics,
[2] Osaka City University,undefined
[3] Sugimoto,undefined
[4] Sumiyoshi-Ku,undefined
[5] Osaka 558-8585,undefined
[6] Japan,undefined
来源
Archiv der Mathematik | 2000年 / 75卷
关键词
Exact Sequence; Finite Group; Direct Summand; Short Exact Sequence; Representation Type;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal O}$\end{document} a complete discrete valuation ring of characteristic zero with maximal ideal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\pi )$\end{document} and residue field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $k = {\cal O}/(\pi )$\end{document} of characteristic p > 0. Let S be a simple kG-module and QS a projective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal O} G$\end{document}-lattice such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $Q_S / \pi Q_S$\end{document} is a projective cover of S. We show that if S is liftable and QS belongs to a block of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal O} G$\end{document} of infinite representation type, then the standard Auslander-Reiten sequence terminating in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega ^{-1}S$\end{document} is a direct summand of the short exact sequence obtained from some Auslander-Reiten sequence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal O}G$\end{document}-lattices by reducing each term mod \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(\pi )$\end{document}.
引用
收藏
页码:92 / 97
页数:5
相关论文
共 50 条