Exact Sequence;
Finite Group;
Direct Summand;
Short Exact Sequence;
Representation Type;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let G be a finite group and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal O}$\end{document} a complete discrete valuation ring of characteristic zero with maximal ideal \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$(\pi )$\end{document} and residue field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$k = {\cal O}/(\pi )$\end{document} of characteristic p > 0. Let S be a simple kG-module and QS a projective \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal O} G$\end{document}-lattice such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$Q_S / \pi Q_S$\end{document} is a projective cover of S. We show that if S is liftable and QS belongs to a block of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal O} G$\end{document} of infinite representation type, then the standard Auslander-Reiten sequence terminating in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\Omega ^{-1}S$\end{document} is a direct summand of the short exact sequence obtained from some Auslander-Reiten sequence of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\cal O}G$\end{document}-lattices by reducing each term mod \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$(\pi )$\end{document}.
机构:
Univ Missouri, Dept Math, Columbia, MO 65211 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
Celikbas, Olgur
Takahashi, Ryo
论文数: 0引用数: 0
h-index: 0
机构:
Shinshu Univ, Fac Sci, Dept Math Sci, Matsumoto, Nagano 3908621, Japan
Univ Nebraska, Dept Math, Lincoln, NE 68588 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA