共 50 条
Stochastic comparisons of distorted distributions, coherent systems and mixtures with ordered components
被引:0
|作者:
Jorge Navarro
Yolanda del Águila
机构:
[1] Universidad de Murcia,Facultad de Matemáticas
[2] Universidad de Almería,Departamento de Matemáticas
来源:
关键词:
Stochastic orders;
Coherent systems;
Order statistics;
Copulas;
Mixtures;
62K10;
60E15;
90B25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A distribution function F is a generalized distorted distribution of the distribution functions F1,…,Fn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1,\ldots ,F_n$$\end{document} if F=Q(F1,…,Fn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F=Q(F_1,\ldots ,F_n)$$\end{document} for an increasing continuous distortion function Q such that Q(0,…,0)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q(0,\ldots ,0)=0$$\end{document} and Q(1,…,1)=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q(1,\ldots ,1)=1$$\end{document}. In this paper, necessary and sufficient conditions for the stochastic (ST) and the hazard rate (HR) orderings of generalized distorted distributions are provided when the distributions F1,…,Fn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1,\ldots ,F_n$$\end{document} are ordered. These results are used to obtain distribution-free ordering properties for coherent systems with heterogeneous components. In particular, we determine all the ST and HR orderings for coherent systems with 1–3 independent components. We also compare systems with dependent components. The results on distorted distributions are also used to get comparisons of finite mixtures.
引用
收藏
页码:627 / 648
页数:21
相关论文