General fractal topography: an open mathematical framework to characterize and model mono-scale-invariances

被引:0
|
作者
Yi Jin
Xianhe Liu
Huibo Song
Junling Zheng
Jienan Pan
机构
[1] Henan Polytechnic University,School of Resources and Environment
[2] Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region,undefined
来源
Nonlinear Dynamics | 2019年 / 96卷
关键词
Scale-invariance; Fractal dimension; Hurst exponent; Porous media; Fractal networks; Fractal topography; Self-sameness; self-similarity; self-affinity (3S);
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we reported there are two kinds of independent complexities in mono-scale-invariance, namely to be behavioral complexity determined by fractal behavior and original one wrapped in scaling object. Quantitative characterization of the complexities is fundamentally important for mechanism exploration and essential understanding of nonlinear systems. Recently, a new concept of fractal topography (Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {\Omega }$$\end{document}) was emerged to define the fractal behavior in self-similarities by scaling lacunarity (P) and scaling coverage (F) as Ω(P,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {\Omega }(P, F)$$\end{document}. It is, however, a “special fractal topography” because fractals are rarely deterministic and always appear stochastic, heterogeneous, and even anisotropic. For that, we reviewed a novel concept of “general fractal topography”, Ω(P,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}(\mathrm {{\mathbf {P}}}, \mathrm {{\mathbf {F}}})$$\end{document}. In Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}$$\end{document}, P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {{\mathbf {P}}}$$\end{document} is generalized to a set accounting for direction-dependent scaling behaviors of the scaling object G, while F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {{\mathbf {F}}}$$\end{document} is extended to consider stochastic and heterogeneous effects. And then, we decomposed G into GG+,G-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {{\mathbf {G}}}\left( G_+, G_-\right) $$\end{document} to ease type controlling and measurement quantification, with G+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_+$$\end{document} wrapping the original complexity while G-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_-$$\end{document} enclosing behavioral complexity. Together with Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}$$\end{document} and G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {{\mathbf {G}}}$$\end{document}, a mathematical model F3SΩ,G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\mathrm {3S}\left( {\varvec{\Omega }}, \mathrm {{\mathbf {G}}}\right) $$\end{document} was then established to unify the definition of deterministic or statistical, self-similar or self-affine, single- or multi-phase properties. For demonstration, algorithms are developed to model natural scale-invariances. Our investigations indicated that the general fractal topography is an open mathematic framework which can admit most complex scaling objects and fractal behaviors.
引用
收藏
页码:2413 / 2436
页数:23
相关论文
共 21 条
  • [1] General fractal topography: an open mathematical framework to characterize and model mono-scale-invariances
    Jin, Yi
    Liu, Xianhe
    Song, Huibo
    Zheng, Junling
    Pan, Jienan
    [J]. NONLINEAR DYNAMICS, 2019, 96 (04) : 2413 - 2436
  • [2] A MATHEMATICAL FRAMEWORK TO CHARACTERIZE COMPLEXITY ASSEMBLY IN FRACTAL RIVER NETWORKS
    Jin, Yi
    Zhao, Jingyan
    Dong, Jiabin
    Zheng, Junling
    Zhang, Qing
    Liu, Dandan
    Song, Huibo
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [3] A general framework model for fractal coders
    Sun, YD
    Yao, Z
    Yuan, BZ
    [J]. 2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 27 - 30
  • [4] A general model of hierarchical fractal scale-free networks
    Yakubo, Kousuke
    Fujiki, Yuka
    [J]. PLOS ONE, 2022, 17 (03):
  • [5] General framework, mathematical model, current activities and open issues for media adaptation in MPEG-21 DIA
    Huang, Tian-Yun
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2008, 31 (07): : 1185 - 1199
  • [6] The Mathematical Working Space model: An open and adaptable theoretical framework?
    Derouet, Charlotte
    Kuzniak, Alain
    Nechache, Assia
    Parzysz, Bernard
    Vivier, Laurent
    [J]. PROCEEDINGS OF THE TENTH CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION (CERME10), 2017, : 2710 - 2712
  • [7] A general framework for large-scale model selection
    Haunschild, M. D.
    Wahl, S. A.
    Freisleben, B.
    Wiechert, W.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (06): : 901 - 917
  • [8] Mathematical analysis of fractal approach to general cell stability and model virus-cell interaction
    Fedchuk, AO
    Fedchuk, OP
    Fedchuk, AS
    Fedchuk, PO
    [J]. ANTIVIRAL RESEARCH, 2005, 65 (03) : A72 - A72
  • [9] A general mathematical framework to model generation structure in a population of asynchronously dividing cells
    León, K
    Faro, J
    Carneiro, J
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2004, 229 (04) : 455 - 476
  • [10] Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media
    Mou, Xinzhu
    Chen, Zhenqian
    [J]. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2019, 49 (03): : 520 - 526