Reedbeds, which are dominated by the common reed Phragmites australis, provide one of the most important aquatic habitats in the United Kingdom, and have been identified as a priority habitat under the UK Biodiversity Action Plan. Ongoing conservation and management of reedbeds is necessary because past eradication and fragmentation have been extensive. However, there has been little consideration of the potential long-term effects that may arise if processes such as founder effects during restoration projects, or genetic bottlenecks following harvesting, are leading to reductions in genetic diversity. In this study, we used microsatellite data to compare the genetic diversity of 19 P. australis stands in the UK, and found that neither size, management, nor habitat disturbance were affecting genetic diversity. Mixed reproduction (clonal and sexual), possibly combined with gene flow across relatively small spatial scales, appears to be maintaining genetic diversity within most stands. However, most stands were highly genetically differentiated from one another, which implies low gene flow. Long-term genetic diversity in managed stands may therefore require periodic bolstering from other populations, combined with the simultaneous cultivation of multiple generations. In addition, low gene flow suggests that managers should actively introduce plants into all areas in which reedbeds are desired. In conclusion, our study shows that reedbed restoration and maintenance do not seem to be adversely affecting the population genetics of P. australis, but the importance of genetic diversity should be factored into long-term projects.