On discrete hyperbolic tension splines

被引:0
|
作者
Paolo Costantini
Boris I. Kvasov
Carla Manni
机构
[1] Università di Siena,Dipartimento di Matematica
[2] Russian Academy of Sciences,Institute of Computational Technologies
[3] Università di Torino,Dipartimento di Matematica
来源
关键词
hyperbolic tension splines; multipoint boundary value problem; discrete hyperbolic tension splines and B-splines; shape preserving interpolation;
D O I
暂无
中图分类号
学科分类号
摘要
A hyperbolic tension spline is defined as the solution of a differential multipoint boundary value problem. A discrete hyperbolic tension spline is obtained using the difference analogues of differential operators; its computation does not require exponential functions, even if its continuous extension is still a spline of hyperbolic type. We consider the basic computational aspects and show the main features of this approach.
引用
收藏
页码:331 / 354
页数:23
相关论文
共 50 条
  • [1] On discrete hyperbolic tension splines
    Costantini, P
    Kvasov, BI
    Manni, C
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (04) : 331 - 354
  • [2] ON HYPERBOLIC SPLINES
    SCHUMAKER, LL
    JOURNAL OF APPROXIMATION THEORY, 1983, 38 (02) : 144 - 166
  • [3] On Approximation by Hyperbolic Splines
    Kulikov E.K.
    Makarov A.A.
    Journal of Mathematical Sciences, 2019, 240 (6) : 822 - 832
  • [4] DMBVP for tension splines
    Kvasov, BI
    Proceedings of the Conference on Applied Mathematics and Scientific Computing, 2005, : 67 - 94
  • [5] PROPERTIES OF SPLINES IN TENSION
    PRUESS, S
    JOURNAL OF APPROXIMATION THEORY, 1976, 17 (01) : 86 - 96
  • [6] Hyperbolic splines and nonlinear distortion
    Martin, R
    Lever, K
    McCarthy, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1825 - 1828
  • [7] Parametric splines on a hyperbolic paraboloid
    Peng, Fengfu
    Han, Xuli
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 183 - 191
  • [8] Construction of hyperbolic interpolation splines
    B. I. Kvasov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 539 - 548
  • [9] Construction of Hyperbolic Interpolation Splines
    Kvasov, B. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) : 539 - 548
  • [10] DISCRETE BINOMIAL SPLINES
    OLKKONEN, H
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1995, 57 (02): : 101 - 106