A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients

被引:0
|
作者
Samantha Bove
Maria Colomba Comes
Vito Lorusso
Cristian Cristofaro
Vittorio Didonna
Gianluca Gatta
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Maria Irene Pastena
Nicole Petruzzellis
Domenico Pomarico
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Annarita Fanizzi
Raffaella Massafra
机构
[1] Struttura Semplice Dipartimentale Di Fisica Sanitaria,Dipartimento Di Medicina Di Precisione
[2] I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,undefined
[3] Unità Operativa Complessa Di Oncologia Medica,undefined
[4] I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,undefined
[5] Università Della Campania “Luigi Vanvitelli”,undefined
[6] Struttura Semplice Dipartimentale Di Radiologia Senologica,undefined
[7] I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,undefined
[8] Unità Operativa Complessa Di Anatomia Patologica,undefined
[9] I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,undefined
[10] Struttura Semplice Dipartimentale Di Oncologia Per La Presa in Carico Globale del Paziente,undefined
[11] I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated performing the sentinel lymph-node biopsy, that is a time-consuming and expensive intraoperative procedure for the sentinel lymph-node (SLN) status assessment. The aim of this study was to predict the nodal status of 142 clinically negative breast cancer patients by means of both clinical and radiomic features extracted from primary breast tumor ultrasound images acquired at diagnosis. First, different regions of interest (ROIs) were segmented and a radiomic analysis was performed on each ROI. Then, clinical and radiomic features were evaluated separately developing two different machine learning models based on an SVM classifier. Finally, their predictive power was estimated jointly implementing a soft voting technique. The experimental results showed that the model obtained by combining clinical and radiomic features provided the best performances, achieving an AUC value of 88.6%, an accuracy of 82.1%, a sensitivity of 100% and a specificity of 78.2%. The proposed model represents a promising non-invasive procedure for the SLN status prediction in clinically negative patients.
引用
收藏
相关论文
共 50 条
  • [1] A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
    Bove, Samantha
    Comes, Maria Colomba
    Lorusso, Vito
    Cristofaro, Cristian
    Didonna, Vittorio
    Gatta, Gianluca
    Giotta, Francesco
    La Forgia, Daniele
    Latorre, Agnese
    Pastena, Maria Irene
    Petruzzellis, Nicole
    Pomarico, Domenico
    Rinaldi, Lucia
    Tamborra, Pasquale
    Zito, Alfredo
    Fanizzi, Annarita
    Massafra, Raffaella
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Artificial neural network models to predict nodal status in clinically node-negative breast cancer
    Looket Dihge
    Mattias Ohlsson
    Patrik Edén
    Pär-Ola Bendahl
    Lisa Rydén
    BMC Cancer, 19
  • [3] Artificial neural network models to predict nodal status in clinically node-negative breast cancer
    Dihge, Looket
    Ohlsson, Mattias
    Eden, Patrik
    Bendahl, Par-Ola
    Ryden, Lisa
    BMC CANCER, 2019, 19 (1)
  • [4] Breast cancer patients with a negative axillary ultrasound may have clinically significant nodal metastasis
    Stephen Keelan
    Anna Heeney
    Eithne Downey
    Aisling Hegarty
    Trudi Roche
    Colm Power
    Neasa Ni Mhuircheartaigh
    Deirdre Duke
    Jennifer Kerr
    Niamh Hambly
    Arnold Hill
    Breast Cancer Research and Treatment, 2021, 187 : 303 - 310
  • [5] Breast cancer patients with a negative axillary ultrasound may have clinically significant nodal metastasis
    Keelan, Stephen
    Heeney, Anna
    Downey, Eithne
    Hegarty, Aisling
    Roche, Trudi
    Power, Colm
    Ni Mhuircheartaigh, Neasa
    Duke, Deirdre
    Kerr, Jennifer
    Hambly, Niamh
    Hill, Arnold
    BREAST CANCER RESEARCH AND TREATMENT, 2021, 187 (02) : 303 - 310
  • [6] OncotypeDX Recurrence Score Does Not Predict Nodal Burden in Clinically Node Negative Breast Cancer Patients
    S. E. Tevis
    R. Bassett
    I. Bedrosian
    C. H. Barcenas
    D. M. Black
    A. S. Caudle
    S. M. DeSnyder
    E. Fitzsullivan
    K. K. Hunt
    H. M. Kuerer
    A. Lucci
    F. Meric-Bernstam
    E. A. Mittendorf
    K. Park
    M. Teshome
    A. M. Thompson
    R. F. Hwang
    Annals of Surgical Oncology, 2019, 26 : 815 - 820
  • [7] OncotypeDX Recurrence Score Does Not Predict Nodal Burden in Clinically Node Negative Breast Cancer Patients
    Tevis, S. E.
    Bassett, R.
    Bedrosian, I.
    Barcenas, C. H.
    Black, D. M.
    Caudle, A. S.
    DeSnyder, S. M.
    Fitzsullivan, E.
    Hunt, K. K.
    Kuerer, H. M.
    Lucci, A.
    Meric-Bernstam, F.
    Mittendorf, E. A.
    Park, K.
    Teshome, M.
    Thompson, A. M.
    Hwang, R. F.
    ANNALS OF SURGICAL ONCOLOGY, 2019, 26 (03) : 815 - 820
  • [8] Multiregional radiomic model for breast cancer diagnosis: value of ultrasound-based peritumoral and parenchymal radiomics
    Guo, Suping
    Huang, Xingzhi
    Xu, Chao
    Yu, Meiqin
    Li, Yaohui
    Wu, Zhenghua
    Zhou, Aiyun
    Xu, Pan
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (05) : 3127 - +
  • [9] Impact of nodal status on indication for adjuvant treatment in clinically node negative breast cancer
    Greco, M
    Gennaro, M
    Valagussa, P
    Agresti, R
    Ferraris, C
    Ferrari, B
    Urban, C
    Gianni, L
    ANNALS OF ONCOLOGY, 2000, 11 (09) : 1137 - 1140
  • [10] Ultrasound-based radiomics combined with immune status to predict sentinel lymph node metastasis in primary breast cancer
    Zhao, Miaomiao
    Zheng, Yan
    Chu, Jian
    Liu, Zhenhua
    Dong, Fenglin
    SCIENTIFIC REPORTS, 2023, 13 (01)