Worst-case results for positive semidefinite rank

被引:0
|
作者
João Gouveia
Richard Z. Robinson
Rekha R. Thomas
机构
[1] University of Coimbra,CMUC, Department of Mathematics
[2] University of Washington,Department of Mathematics
来源
Mathematical Programming | 2015年 / 153卷
关键词
52C02; 68Q02; 90C02;
D O I
暂无
中图分类号
学科分类号
摘要
We present various worst-case results on the positive semidefinite (psd) rank of a nonnegative matrix, primarily in the context of polytopes. We prove that the psd rank of a generic n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional polytope with v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} vertices is at least (nv)14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(nv)^{\frac{1}{4}}$$\end{document} improving on previous lower bounds. For polygons with v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} vertices, we show that psd rank cannot exceed 4v/6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \left\lceil v/6 \right\rceil $$\end{document} which in turn shows that the psd rank of a p×q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \times q$$\end{document} matrix of rank three is at most 4min{p,q}/6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\left\lceil \min \{p,q\}/6 \right\rceil $$\end{document}. In general, a nonnegative matrix of rank k+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k+1 \atopwithdelims ()2}$$\end{document} has psd rank at least k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and we pose the problem of deciding whether the psd rank is exactly k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. Using geometry and bounds on quantifier elimination, we show that this decision can be made in polynomial time when k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is fixed.
引用
收藏
页码:201 / 212
页数:11
相关论文
共 50 条
  • [1] Worst-case results for positive semidefinite rank
    Gouveia, Joo
    Robinson, Richard Z.
    Thomas, Rekha R.
    MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 201 - 212
  • [2] Results on worst-case performance assessment
    Packard, A
    Balas, G
    Liu, R
    Shin, JY
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2425 - 2427
  • [3] On the Central Path of Semidefinite Optimization: Degree and Worst-Case Convergence Rate
    Basu, Saugata
    Mohammad-Nezhad, Ali
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2022, 6 (02) : 299 - 318
  • [4] Worst-case dual control: basic results
    Veres, SM
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (18) : 1621 - 1646
  • [5] Positive semidefinite rank
    Hamza Fawzi
    João Gouveia
    Pablo A. Parrilo
    Richard Z. Robinson
    Rekha R. Thomas
    Mathematical Programming, 2015, 153 : 133 - 177
  • [6] A nonlinear semidefinite optimization relaxation for the worst-case linear optimization under uncertainties
    Jiming Peng
    Tao Zhu
    Mathematical Programming, 2015, 152 : 593 - 614
  • [7] Positive semidefinite rank
    Fawzi, Hamza
    Gouveia, Joao
    Parrilo, Pablo A.
    Robinson, Richard Z.
    Thomas, Rekha R.
    MATHEMATICAL PROGRAMMING, 2015, 153 (01) : 133 - 177
  • [8] A nonlinear semidefinite optimization relaxation for the worst-case linear optimization under uncertainties
    Peng, Jiming
    Zhu, Tao
    MATHEMATICAL PROGRAMMING, 2015, 152 (1-2) : 593 - 614
  • [9] NEW RESULTS IN THE WORST-CASE ANALYSIS FOR FLOWSHOP SCHEDULING
    NOWICKI, E
    SMUTNICKI, C
    DISCRETE APPLIED MATHEMATICS, 1993, 46 (01) : 21 - 41
  • [10] Worst-Case Robust Multiuser Transmit Beamforming Using Semidefinite Relaxation: Duality and Implications
    Chang, Tsung-Hui
    Ma, Wing-Kin
    Chi, Chong-Yung
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1579 - 1583