q,t-Fuß–Catalan numbers for finite reflection groups

被引:0
|
作者
Christian Stump
机构
[1] Universität Wien,Fakultät für Mathematik
来源
关键词
Catalan number; Fuß–Catalan number; ,; -Catalan number; Nonnesting partition; Dyck path; Shi arrangement; Cherednik algebra;
D O I
暂无
中图分类号
学科分类号
摘要
In type A, the q,t-Fuß–Catalan numbers can be defined as the bigraded Hilbert series of a module associated to the symmetric group. We generalize this construction to (finite) complex reflection groups and, based on computer experiments, we exhibit several conjectured algebraic and combinatorial properties of these polynomials with nonnegative integer coefficients. We prove the conjectures for the dihedral groups and for the cyclic groups. Finally, we present several ideas on how the q,t-Fuß–Catalan numbers could be related to some graded Hilbert series of modules arising in the context of rational Cherednik algebras and thereby generalize known connections.
引用
收藏
页码:67 / 97
页数:30
相关论文
共 50 条
  • [1] q,t-Fu-Catalan numbers for finite reflection groups
    Stump, Christian
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (01) : 67 - 97
  • [2] CATALAN NUMBERS FOR COMPLEX REFLECTION GROUPS
    Gordon, Iain G.
    Griffeth, Stephen
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (06) : 1491 - 1502
  • [3] A filtration of (q, t)-Catalan numbers
    Bergeron, N.
    Descouens, F.
    Zabrocki, M.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (01) : 16 - 36
  • [4] q, t-Catalan numbers and knot homology
    Gorsky, E.
    [J]. ZETA FUNCTIONS IN ALGEBRA AND GEOMETRY, 2012, 566 : 213 - 232
  • [5] t,q-Catalan numbers and the Hilbert scheme
    Haiman, M
    [J]. DISCRETE MATHEMATICS, 1998, 193 (1-3) : 201 - 224
  • [6] Conjectured statistics for the q,t-Catalan numbers
    Haglund, J
    [J]. ADVANCES IN MATHEMATICS, 2003, 175 (02) : 319 - 334
  • [7] Recursions for rational q, t-Catalan numbers
    Gorsky, Eugene
    Mazin, Mikhail
    Vazirani, Monica
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 173
  • [8] A COMBINATORIAL APPROACH TO THE SYMMETRY OF q, t-CATALAN NUMBERS
    Lee, Kyungyong
    Li, Li
    Loehr, Nicholas A.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 191 - 232
  • [9] Compactified Jacobians and q, t-Catalan numbers, I
    Gorsky, Evgeny
    Mazin, Mikhail
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) : 49 - 63
  • [10] Limits of modified higher q, t-Catalan numbers
    Lee, Kyungyong
    Li, Li
    Loehr, Nicholas A.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):