AFM investigations on the influence of CO2 exposure on Ba0.5Sr0.5Co0.8Fe0.2O3–δ

被引:0
|
作者
K. Schmale
J. Barthel
M. Bernemann
M. Grünebaum
S. Koops
M. Schmidt
J. Mayer
H. -D. Wiemhöfer
机构
[1] Institute for Inorganic and Analytical Chemistry,
[2] Ernst Ruska–Center for Microscopy and Spectroscopy with Electrons,undefined
[3] RWTH Aachen and Forschungszentrum Jülich GmbH,undefined
关键词
BSCF; KPFM; EFM; Carbonate formation;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, fresh and CO2-exposed specimens of Ba0.5Sr0.5Co0.8Fe0.2O3–δ (BSCF) are examined by atomic force microscopy (AFM) using amplitude-modulated Kelvin probe force microscopy (KPFM) and also electrostatic force microscopy (EFM) to characterize the early stages of the formation of reaction products due to reaction with gaseous CO2. A comparison is made with results from electron microscopy on the same samples. BSCF specimens exposed for 24 and 240 h to an atmosphere of 99.9 % CO2 at 900 °C, respectively, were analyzed and compared with non-exposed specimens. The observation of interconnected carbonate islands on BSCF forming a continuous carbonate layer after some exposure to CO2 indicates a Stranski–Krastanov or Volmer–Weber growth mechanism of the carbonate layer. Our results demonstrate that the measurement of surface potential variations by means of KPFM and EFM constitutes a very sensitive technique to detect the formation of reaction layers on gas permeation membranes such as BSCF. In contrast to electron microscopy techniques, scanning probe techniques permit the investigation of the topography and of electrochemical characteristics of the sample surface as received and without further preparation.
引用
收藏
页码:2897 / 2907
页数:10
相关论文
共 50 条
  • [1] AFM investigations on the influence of CO2 exposure on Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Schmale, K.
    Barthel, J.
    Bernemann, M.
    Gruenebaum, M.
    Koops, S.
    Schmidt, M.
    Mayer, J.
    Wiemhoefer, H. -D.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (11) : 2897 - 2907
  • [2] Synthesis and characterization of Ba0.5Sr0.5Co0.8Fe0.2O3−σ
    Qibao Wang
    Yan Yuan
    Minfang Han
    Peiyu Zhu
    [J]. Rare Metals, 2009, 28 : 39 - 42
  • [3] Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3 - δ
    Kriegel, R.
    Kircheisen, R.
    Toepfer, J.
    [J]. SOLID STATE IONICS, 2010, 181 (1-2) : 64 - 70
  • [4] Processing and characterization of screen printing Ba0.5Sr0.5Co0.8Fe0.2O3−δ inks
    MAGDALENA GROMADA
    DAVIDE GARDINI
    PIETRO GALIZIA
    CARMEN GALASSI
    [J]. Bulletin of Materials Science, 2016, 39 : 559 - 567
  • [5] Mixed reforming of heptane to syngas in the Ba0.5Sr0.5Co0.8Fe0.2O3 membrane reactor
    Zhu, WL
    Han, W
    Xiong, GX
    Yang, WS
    [J]. CATALYSIS TODAY, 2005, 104 (2-4) : 149 - 153
  • [6] Enhancing Phase Stability and CO2 Tolerance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ
    Ivers-Tiffee, E.
    Almar, L.
    Szasz, J.
    Meffert, M.
    Stoermer, H.
    Gerthsen, D.
    [J]. IONIC AND MIXED CONDUCTING CERAMICS 11 (IMCC 11), 2017, 80 (09): : 13 - 19
  • [7] Oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane after surface modification
    Jung Hoon Park
    Edoardo Magnone
    Jong Pyo Kim
    Soo Hyun Choi
    [J]. Korean Journal of Chemical Engineering, 2012, 29 : 235 - 242
  • [8] Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media
    Jin, Chao
    Cao, Xuecheng
    Lu, Fanliang
    Yang, Zhenrong
    Yang, Ruizhi
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10389 - 10393
  • [9] Modification of mixed conducting Ba0.5Sr0.5Co0.8Fe0.2O3–δ by partial substitution of cobalt with tungsten
    M. P. Popov
    S. F. Bychkov
    A. P. Nemudry
    [J]. Russian Journal of Electrochemistry, 2016, 52 : 648 - 654
  • [10] Transitions of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.58Sr0.4Co0.2Fe0.8O3-δ
    Araki, Wakako
    Arai, Yoshio
    Malzbender, Juergen
    [J]. MATERIALS LETTERS, 2014, 132 : 295 - 297