Analyticity and Smoothing Effect for the Coupled System of Equations of Korteweg-de Vries Type with a Single Point Singularity

被引:0
|
作者
Margareth S. Alves
Bianca M. R. Calsavara
Jaime E. Muñoz Rivera
Mauricio Sepúlveda
Octavio Vera Villagrán
机构
[1] Universidade Federal de Viçosa-UFV,Departamento de Matemática
[2] Universidade Estadual de Campinas-Unicamp,CI²MA and Departamento de Ingeniería Matemática
[3] National Laboratory for Scientific Computation,Departamento de Matemática
[4] Universidad de Concepción,undefined
[5] Universidad del Bío-Bío,undefined
来源
关键词
Evolution equations; Bourgain space; Smoothing effect; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
Using Bourgain spaces and the generator of dilation P=3t∂t+x∂x, which almost commutes with the linear Korteweg-de Vries operator, we show that a solution of the initial value problem associated for the coupled system of equations of Korteweg-de Vries type which appears as a model to describe the strong interaction of weakly nonlinear long waves, has an analyticity in time and a smoothing effect up to real analyticity if the initial data only have a single point singularity at x=0.
引用
收藏
页码:75 / 100
页数:25
相关论文
共 50 条
  • [1] Analyticity and Smoothing Effect for the Coupled System of Equations of Korteweg-de Vries Type with a Single Point Singularity
    Alves, Margareth S.
    Calsavara, Bianca M. R.
    Munoz Rivera, Jaime E.
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2011, 113 (01) : 75 - 100
  • [2] Analyticity and smoothing effect for the Korteweg de Vries equation with a single point singularity
    Keiichi Kato
    Takayoshi Ogawa
    [J]. Mathematische Annalen, 2000, 316 : 577 - 608
  • [3] Analyticity and smoothing effect for the Korteweg de Vries equation with a single point singularity
    Kato, K
    Ogawa, T
    [J]. MATHEMATISCHE ANNALEN, 2000, 316 (03) : 577 - 608
  • [4] Spatial Analyticity of Solutions to Korteweg-de Vries Type Equations
    Bouhali, Keltoum
    Moumen, Abdelkader
    Tajer, Khadiga W.
    Taha, Khdija O.
    Altayeb, Yousif
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [5] Coupled system of Korteweg-de Vries equations type in domains with moving boundaries
    Bisognin, Eleni
    Bisognin, Vanilde
    Sepulveda, Mauricio
    Vera, Octavio
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 290 - 321
  • [6] ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG-DE VRIES EQUATIONS
    Micu, Sorin
    Ortega, Jaime H.
    Pazoto, Ademir F.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) : 799 - 827
  • [7] The coupled modified Korteweg-de Vries equations
    Tsuchida, T
    Wadati, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) : 1175 - 1187
  • [8] On the controllability of a linear coupled system of Korteweg-de Vries equations
    Micu, S
    Ortega, JH
    [J]. FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 1020 - 1024
  • [9] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [10] HIERARCHIES OF KORTEWEG-DE VRIES TYPE EQUATIONS
    SVININ, AK
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) : 814 - 827