On the exponential local-global principle for meromorphic functions and algebraic functions

被引:0
|
作者
Hsiu-Lien Huang
Andreas Schweizer
Julie Tzu-Yueh Wang
机构
[1] Institute of Mathematics,Department of Mathematics
[2] Academia Sinica,undefined
[3] Korea Advanced Institute of Science and Technology (KAIST),undefined
来源
Archiv der Mathematik | 2014年 / 102卷
关键词
Primary 30D35; Secondary 11J97; 11D61; 11R58;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the rank one case of Skolem’s Conjecture on the exponential local-global principle for algebraic functions and discuss its analog for meromorphic functions.
引用
收藏
页码:423 / 436
页数:13
相关论文
共 50 条
  • [1] On the exponential local-global principle for meromorphic functions and algebraic functions
    Huang, Hsiu-Lien
    Schweizer, Andreas
    Wang, Julie Tzu-Yueh
    ARCHIV DER MATHEMATIK, 2014, 102 (05) : 423 - 436
  • [2] On the exponential local-global principle
    Bartolome, Boris
    Bilu, Yuri
    Luca, Florian
    ACTA ARITHMETICA, 2013, 159 (02) : 101 - 111
  • [3] Local-global principle for the body of functions on higher local bodies I
    Izquierdo, Diego
    JOURNAL OF NUMBER THEORY, 2015, 157 : 250 - 270
  • [4] Local-global norm principle for algebraic groups
    Barquero, PB
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) : 829 - 838
  • [5] Derivatives of meromorphic functions and exponential functions
    Pai Yang
    Liangwen Liao
    Qiaoyu Chen
    Frontiers of Mathematics in China, 2018, 13 : 417 - 433
  • [6] Derivatives of meromorphic functions and exponential functions
    Yang, Pai
    Liao, Liangwen
    Chen, Qiaoyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (02) : 417 - 433
  • [7] Simple meromorphic functions are algebraic
    Casale, Guy
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02): : 309 - 319
  • [8] Simple meromorphic functions are algebraic
    Guy Casale
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 309 - 319
  • [9] A majoration principle for meromorphic functions
    Dubinin, V. N.
    Kalmykov, S. I.
    SBORNIK MATHEMATICS, 2007, 198 (11-12) : 1737 - 1745
  • [10] Meromorphic algebraic functions of the second degree
    Vatrion, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1929, 189 : 623 - 625