Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equations

被引:0
|
作者
Bernard Bialecki
Andreas Karageorghis
机构
[1] Colorado School of Mines,Department of Applied Mathematics and Statistics
[2] University of Cyprus,Department of Mathematics and Statistics
来源
Numerical Algorithms | 2013年 / 64卷
关键词
Nodal spline collocation; Matrix decomposition algorithm; Fast Fourier transforms; 65N35; 65N22;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the interior nodes of a uniform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\times N\times N$\end{document} partition of the cube and the partial differential equation at the boundary nodes. In the special case of Poisson’s equation, the resulting linear system is solved by a matrix decomposition algorithm with fast Fourier transforms at a cost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(N^3\log N)$\end{document}. For the general variable coefficient diffusion-dominated case, the system is solved using the preconditioned biconjugate gradient stabilized method.
引用
收藏
页码:349 / 383
页数:34
相关论文
共 50 条
  • [1] Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equations
    Bialecki, Bernard
    Karageorghis, Andreas
    NUMERICAL ALGORITHMS, 2013, 64 (02) : 349 - 383
  • [2] Modified nodal cubic spline collocation for biharmonic equations
    Abeer Ali Abushama
    Bernard Bialecki
    Numerical Algorithms, 2006, 43 : 331 - 353
  • [3] Modified nodal cubic spline collocation for elliptic equations
    Bialecki, Bernard
    Wang, Zhongben
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (06) : 1817 - 1839
  • [4] Modified nodal cubic spline collocation for biharmonic equations
    Abushama, Abeer Ali
    Bialecki, Bernard
    NUMERICAL ALGORITHMS, 2006, 43 (04) : 331 - 353
  • [5] High order convergent modified nodal bi-cubic spline collocation method for elliptic partial differential equation
    Singh, Suruchi
    Singh, Swarn
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (05) : 1028 - 1043
  • [6] Hermite Cubic Spline Collocation Method for Nonlinear Fractional Differential Equations with Variable-Order
    Zhao, Tinggang
    Wu, Yujiang
    SYMMETRY-BASEL, 2021, 13 (05):
  • [7] Haar wavelet collocation method for three-dimensional elliptic partial differential equations
    Aziz, Imran
    Siraj-ul-Islam
    Asif, Muhammad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (09) : 2023 - 2034
  • [8] A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations
    Dahiya, Sumita
    Mittal, Ramesh Chandra
    OPEN PHYSICS, 2017, 15 (01): : 453 - 463
  • [9] Meshless global radial point collocation method for three-dimensional partial differential equations
    Xiang, Song
    Jin, Yao-xing
    Jiang, Shao-xi
    Bi, Ze-yang
    Wang, Ke-ming
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (03) : 289 - 297
  • [10] A HYBRID NUMERICAL TECHNIQUE FOR SOLVING THREE-DIMENSIONAL SECOND-ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
    Asif, M. U. H. A. M. M. A. D.
    Amin, R. O. H. U. L.
    Haider, N. A. D. E. E. M.
    Khan, I. M. R. A. N.
    Al-mdallal, Q. A. S. E. M. M.
    Said, Salem ben
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (02)