Exploring the potential of standalone and tandem solar cells with Sb2S3 and Sb2Se3 absorbers: a simulation study

被引:0
|
作者
Z. Dahmardeh
M. Saadat
机构
[1] University of Sistan and Baluchestan,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Thin-film antimony chalcogenide binary compounds are potential candidates for efficient and low-cost photovoltaic absorbers. This study investigates the performance of Sb2S3 and Sb2Se3 as photovoltaic absorbers, aiming to optimize their efficiency. The standalone Sb2S3 and Sb2Se3 sub-cells are analyzed using SCAPS-1D simulations, and then a tandem structure with Sb2S3 as the top-cell absorber and Sb2Se3 as the bottom-cell absorber is designed, using the filtered spectrum and the current matching technique. The optimal configuration for maximum efficiency is achieved by adjusting the thickness of the absorber layer. The results show that antimony chalcogenide binary compounds have great potential as photovoltaic absorbers, enabling the development of efficient and low-cost solar cells. A remarkable conversion efficiency of 22.2% is achieved for the optimized tandem cell structure, with absorber thicknesses of 420 nm and 1020 nm for the top and bottom sub-cells respectively. This study presents a promising approach towards high-performance tandem solar cells.
引用
收藏
相关论文
共 50 条
  • [1] Exploring the potential of standalone and tandem solar cells with Sb2S3 and Sb2Se3 absorbers: a simulation study
    Dahmardeh, Z.
    Saadat, M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Sb2Se3 versus Sb2S3 solar cell: A numerical simulation
    Mamta
    Maurya, K. K.
    Singh, V. N.
    SOLAR ENERGY, 2021, 228 : 540 - 549
  • [3] Modeling a tandem solar cell based on Sb2S3 and Sb2Se3 absorber layers
    Hajjiah, Ali
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [4] Enhanced Efficiency and Stability in Sb2S3 Seed Layer Buffered Sb2Se3 Solar Cells
    Amin, Al
    Li, Dian
    Duan, Xiaomeng
    Vijayaraghavan, S. N.
    Menon, Harigovind G.
    Wall, Jacob
    Weaver, Mark
    Cheng, Mark Ming-Cheng
    Zheng, Yufeng
    Li, Lin
    Yan, Feng
    ADVANCED MATERIALS INTERFACES, 2022, 9 (21)
  • [5] Fabrication of Sb2S3/Sb2Se3 heterostructure for potential resistive switching applications
    Prajapat, Pukhraj
    Vashishtha, Pargam
    Goswami, Preeti
    Gupta, Govind
    NANO EXPRESS, 2024, 5 (01):
  • [6] THE STRUCTURE OF THE EPITAXIAL-FILMS SB2S3 AND SB2SE3
    KOSEVICH, VM
    ZOZULYA, LF
    KRISTALLOGRAFIYA, 1981, 26 (03): : 640 - 641
  • [7] Optical loss analysis of Sb2S3 and Sb2Se3 thin film solar cells: A Quantitative Assessment
    Hajjiah, Ali
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [8] Performance investigation of Sb2S3 and Sb2Se3 earth abundant based thin film solar cells
    Khadir, A.
    OPTICAL MATERIALS, 2022, 127
  • [9] Improving Photocurrent in Sb2Se3 Thin-Film Solar Cells Through Sb2S3 Electron Reflector Layer: A Simulation Study
    Jalali, Hadi
    Orouji, Ali A.
    Gharibshahian, Iman
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (01)
  • [10] REFLECTION SPECTRA OF SB2S3, SB2SE3, BI2S3
    SOBOLEV, VV
    KRAMAR, VM
    ZAGAINOV, EF
    UKRAINSKII FIZICHESKII ZHURNAL, 1983, 28 (05): : 783 - 784