Graph neural network for recommendation in complex and quaternion spaces

被引:0
|
作者
Longcan Wu
Daling Wang
Shi Feng
Xiangmin Zhou
Yifei Zhang
Ge Yu
机构
[1] Northeastern University,
[2] RMIT University,undefined
关键词
Recommendation; Collaborative filtering; Graph neural network; Non-real space;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of graph neural network, researchers begin to use bipartite graph to model user-item interactions for recommendation. It is worth noting that most of graph recommendation models represent users and items in the real-valued space, which ignore the rich representational capacity of the non-real space. Besides, the simplicity and symmetry of the inner product make it ineffectively capture the intricate antisymmetric relations between users and items in interaction modeling. In this paper, based on the framework of graph neural network, we propose Graph Collaborative Filtering for recommendation in Complex and Quaternion space (GCFC and GCFQ respectively). Specifically, we first use complex embeddings or quaternion embeddings to initialize users and items. Then, the Hermitian product (for GCFC) or Hamilton product (for GCFQ) and embedding propagation layers are used to further enrich the embeddings of users and items. As such, we can obtain both latent inter-dependencies and intra-dependencies between components of users and items. Finally, we aggregate the embeddings of different propagation layers and use the Hermitian or Hamilton product with inner product to obtain the intricate antisymmetric relations between users and items. We have carried out extensive experiments on four real-world datasets to verify the effectiveness of GCFC and GCFQ.
引用
收藏
页码:3945 / 3964
页数:19
相关论文
共 50 条
  • [1] Graph neural network for recommendation in complex and quaternion spaces
    Wu, Longcan
    Wang, Daling
    Feng, Shi
    Zhou, Xiangmin
    Zhang, Yifei
    Yu, Ge
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (06): : 3945 - 3964
  • [2] Graph Collaborative Filtering for Recommendation in Complex and Quaternion Spaces
    Wu, Longcan
    Wang, Daling
    Feng, Shi
    Zhou, Xiangmin
    Zhang, Yifei
    Yu, Ge
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2022, 2022, 13724 : 579 - 594
  • [3] Quaternion-based knowledge graph neural network for social recommendation
    Wang, Chenyu
    Li, Lingxiao
    Zhang, Haiyang
    Li, Dun
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [4] Quaternion-based graph convolution network for recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S. S.
    Zhao, Lei
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 2835 - 2854
  • [5] Quaternion-based graph convolution network for recommendation
    Yaxing Fang
    Pengpeng Zhao
    Guanfeng Liu
    Yanchi Liu
    Victor S. Sheng
    Lei Zhao
    Xiaofang Zhou
    World Wide Web, 2023, 26 : 2835 - 2854
  • [6] Quaternion-Based Knowledge Graph Network for Recommendation
    Li, Zhaopeng
    Xu, Qianqian
    Jiang, Yangbangyan
    Cao, Xiaochun
    Huang, Qingming
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 880 - 888
  • [7] Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network
    Xia, Liqiao
    Liang, Yongshi
    Leng, Jiewu
    Zheng, Pai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 232
  • [8] Interaction Graph Neural Network for News Recommendation
    Qia, Yongye
    Zhao, Pengpeng
    Li, Zhixu
    Fang, Junhua
    Zhao, Lei
    Sheng, Victor S.
    Cui, Zhiming
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 599 - 614
  • [9] Federated Social Recommendation with Graph Neural Network
    Liu, Zhiwei
    Yang, Liangwei
    Fan, Ziwei
    Peng, Hao
    Yu, Philip S.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (04)
  • [10] Enhanced Sub-graph Reconstruction Graph Neural Network for Recommendation
    Liu, Zhe
    Lou, Xiaojun
    Li, Jian
    Liu, Guanjun
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)