A novel look-ahead optimization strategy for trie-based approximate string matching

被引:0
|
作者
Ghada Badr
B. John Oommen
机构
[1] Carleton University,School of Computer Science
来源
关键词
Trie-based syntactic pattern recognition; Approximate string matching; Noisy syntactic recognition using tries; Branch and bound techniques; Pruning;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the problem of estimating a transmitted string X* by processing the corresponding string Y, which is a noisy version of X*. We assume that Y contains substitution, insertion, and deletion errors, and that X* is an element of a finite (but possibly, large) dictionary, H. The best estimate X+ of X*, is defined as that element of H which minimizes the generalized Levenshtein distance D(X, Y) between X and Y such that the total number of errors is not more than K, for all X ∈H. The trie is a data structure that offers search costs that are independent of the document size. Tries also combine prefixes together, and so by using tries in approximate string matching we can utilize the information obtained in the process of evaluating any one D(Xi, Y), to compute any other D(Xj, Y), where Xi and Xj share a common prefix. In the artificial intelligence (AI) domain, branch and bound (BB) schemes are used when we want to prune paths that have costs above a certain threshold. These techniques have been applied to prune, for example, game trees. In this paper, we present a new BB pruning strategy that can be applied to dictionary-based approximate string matching when the dictionary is stored as a trie. The new strategy attempts to look ahead at each node, c, before moving further, by merely evaluating a certain local criterion at c. The search algorithm according to this pruning strategy will not traverse inside the subtrie(c) unless there is a “hope” of determining a suitable string in it. In other words, as opposed to the reported trie-based methods (Kashyap and Oommen in Inf Sci 23(2):123–142, 1981; Shang and Merrettal in IEEE Trans Knowledge Data Eng 8(4):540–547, 1996), the pruning is done a priori before even embarking on the edit distance computations. The new strategy depends highly on the variance of the lengths of the strings in H. It combines the advantages of partitioning the dictionary according to the string lengths, and the advantages gleaned by representing H using the trie data structure. The results demonstrate a marked improvement (up to 30% when costs are of a 0/1 form, and up to 47% when costs are general) with respect to the number of operations needed on three benchmark dictionaries.
引用
收藏
页码:177 / 187
页数:10
相关论文
共 50 条
  • [1] A novel look-ahead optimization strategy for trie-based approximate string matching
    Badr, Ghada
    Oommen, B. John
    PATTERN ANALYSIS AND APPLICATIONS, 2006, 9 (2-3) : 177 - 187
  • [2] A look-ahead branch and bound pruning scheme for trie-based approximate string matching
    Badr, G
    Oommen, JB
    Computer Recognition Systems, Proceedings, 2005, : 87 - 94
  • [3] A Trie-Based Authentication Scheme for Approximate String Queries
    Wang, Yu
    Yang, Liangyong
    Zhang, Jilian
    Deng, Xuelian
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (04) : 537 - 543
  • [4] A look-ahead strategy for graph matching in retrieval by spatial arrangement
    Berretti, S
    Del Bimbo, A
    Vicario, E
    2000 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, PROCEEDINGS VOLS I-III, 2000, : 1721 - 1724
  • [5] Trie-join: a trie-based method for efficient string similarity joins
    Jianhua Feng
    Jiannan Wang
    Guoliang Li
    The VLDB Journal, 2012, 21 : 437 - 461
  • [6] Trie-join: a trie-based method for efficient string similarity joins
    Feng, Jianhua
    Wang, Jiannan
    Li, Guoliang
    VLDB JOURNAL, 2012, 21 (04): : 437 - 461
  • [7] Online optimization with gradual look-ahead
    Fabian Dunke
    Stefan Nickel
    Operational Research, 2021, 21 : 2489 - 2523
  • [8] Online optimization with gradual look-ahead
    Dunke, Fabian
    Nickel, Stefan
    OPERATIONAL RESEARCH, 2021, 21 (04) : 2489 - 2523
  • [9] Look-Ahead Bidding Strategy for Energy Storage
    Wang, Yishen
    Dvorkin, Yury
    Fernandez-Blanco, Ricardo
    Xu, Bolun
    Qiu, Ting
    Kirschen, Daniel S.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (03) : 1106 - 1117