Parameter-Dependent Lyapunov Function Method for a Class of Uncertain Nonlinear Systems with Multiple Equilibria

被引:0
|
作者
Zhisheng Duan
Jinzhi Wang
Lin Huang
机构
[1] State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science,
[2] Peking University,undefined
来源
关键词
Lyapunov Function; Controller Design; Linear Matrix Inequality; Global Convergence; Multiple Equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
First, a new linear matrix inequality (LMI) characterization of extended strict positive realness is presented for linear continuous-time systems. Then a class of nonlinear systems with multiple equilibria subject to polytopic uncertainty is addressed by the parameter-dependent Lyapunov function method. New sufficient conditions for global convergence are presented. This allows the Lyapunov function to be parameter dependent. Furthermore, an LMI-based controller design method is also given, and reduced-order controllers can be designed by performing a structural constraint on the introduced slack variables. Several numerical examples are included to demonstrate the applicability of the proposed method.
引用
收藏
页码:147 / 164
页数:17
相关论文
共 50 条
  • [1] Parameter-dependent Lyapunov function method for a class of uncertain nonlinear systems with multiple equilibria
    Duan, Zhisheng
    Wang, Jinzhi
    Huang, Lin
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (02) : 147 - 164
  • [2] Parameter-Dependent Lyapunov Functions for Robust Performance of Uncertain Systems
    Pessim, Paulo S. P.
    Lacerda, Marcio J.
    Agulhari, Cristiano M.
    [J]. IFAC PAPERSONLINE, 2018, 51 (25): : 293 - 298
  • [3] Parameter-dependent PWQ Lyapunov function stability criteria for uncertain piecewise linear systems
    Hovd, M.
    Olaru, S.
    [J]. MODELING IDENTIFICATION AND CONTROL, 2018, 39 (01) : 15 - 21
  • [4] Parameter-dependent Lyapunov functional for systems with multiple time delays
    Min WU
    School of Mathematical Science and Computing Technology
    [J]. Control Theory and Technology, 2004, (03) : 239 - 245
  • [5] Parameter-dependent Lyapunov functional for systems with multiple time delays
    Min Wu
    Yong He
    [J]. Journal of Control Theory and Applications, 2004, 2 (3): : 239 - 245
  • [6] Parameter-dependent Lyapunov function for a polytope of matrices
    Mori, T
    Kokame, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) : 1516 - 1519
  • [7] Parameter-dependent Lyapunov function approach to stability analysis and design for uncertain systems with time-varying delay
    Cao, YY
    Xue, A
    [J]. EUROPEAN JOURNAL OF CONTROL, 2005, 11 (01) : 56 - 66
  • [8] Representation of a class of nonlinear systems with parameter-dependent linear approximations
    Ariffin, A
    Munro, N
    [J]. UKACC INTERNATIONAL CONFERENCE ON CONTROL '98, VOLS I&II, 1998, : 537 - 542
  • [9] Robust H∞ control of uncertain linear systems via parameter-dependent Lyapunov functions
    de Souza, CE
    Trofino, A
    de Oliveira, J
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3194 - 3199
  • [10] Robust H∞ of uncertain distributed delay systems:: Parameter-dependent Lyapunov functional approach
    Lv, Xuefeng
    Wu, Ligang
    Wang, Changhong
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 930 - 935