Schauder Type Estimates for “Flat” Viscosity Solutions to Non-convex Fully Nonlinear Parabolic Equations and Applications

被引:0
|
作者
João Vítor da Silva
Disson dos Prazeres
机构
[1] Universidad de Buenos Aires,Facultad de Ciencias Exactas y Naturales, Departamento de Matemática
[2] Universidad de Buenos Aires,Departamento de Matemática, Facultad de Ciencias Exactas y Naturales
来源
Potential Analysis | 2019年 / 50卷
关键词
Fully nonlinear parabolic equations; Flat viscosity solutions; Schauder type estimates; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we establish Schauder type estimates for viscosity solutions with small enough oscillation to non-convex fully nonlinear second order parabolic equations of the following form Eq∂u∂t−F(x,t,D2u)=f(x,t)inQ1=B1×(−1,0],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\partial u}{\partial t} - F(x, t, D^{2} u) = f(x, t) \quad \text{in} \quad Q_{1} = B_{1} \times (-1, 0], $$\end{document}provided that the source f and the coefficients of F are Dini continuous functions. Furthermore, for problems with merely continuous data, we prove that such solutions are parabolically C1,Log-Lip smooth. Finally, we put forward a number of applications consequential of our estimates, which include a partial regularity result and a theorem of Schauder type for classical solutions.
引用
收藏
页码:149 / 170
页数:21
相关论文
共 50 条