Semi-stability for bi-Holomorphic pairs over compact bi-Hermitian Gauduchon manifolds

被引:0
|
作者
Ruixin Wang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Journal of Geometry | 2021年 / 112卷
关键词
-Holomorphic pair; -Semi-stability; Approximate ; -Hermitian–Einstein structure; Gauduchon manifolds; 53C07; 58E15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate canonical metrics on bi-holomorphic bundles with a nontrivial global holomorphic section, and we prove that the I±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\pm }$$\end{document}-holomorphic pair (E,∂¯+,∂¯-,ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,\bar{\partial }_{+},\bar{\partial }_{-},\phi )$$\end{document} is (α,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\tau ) $$\end{document}-semi-stable if and only if it admits an approximate (α,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\tau )$$\end{document}-Hermitian–Einstein structure over the compact bi-Hermitian manifold.
引用
收藏
相关论文
共 8 条