Using extremal events to characterize noisy time series

被引:0
|
作者
Eric Berry
Bree Cummins
Robert R. Nerem
Lauren M. Smith
Steven B. Haase
Tomas Gedeon
机构
[1] Montana State University,Department of Mathematical Sciences
[2] Duke University,Biology Department
来源
关键词
Time series; Merge trees; Order of extrema; Partial orders; 05C12; 06A06; 37M10;
D O I
暂无
中图分类号
学科分类号
摘要
Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-approximates the time series. Based on the merge tree of a continuous function, we define a new object called the normalized branch decomposition, which allows us to compute intervals for any level ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. We show that there is a well-defined total order on these intervals for a single time series, and that it is naturally extended to a partial order across a collection of time series comprising a dataset. We use the order of the extracted intervals in two applications. First, the partial order describing a single dataset can be used to pattern match against switching model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589–1616, 2018), which allows the rejection of a network model. Second, the comparison between graph distances of the partial orders of different datasets can be used to quantify similarity between biological replicates.
引用
收藏
页码:1523 / 1557
页数:34
相关论文
共 50 条
  • [1] Using extremal events to characterize noisy time series
    Berry, Eric
    Cummins, Bree
    Nerem, Robert R.
    Smith, Lauren M.
    Haase, Steven B.
    Gedeon, Tomas
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (05) : 1523 - 1557
  • [2] Detecting and Classifying Events in Noisy Time Series
    Kang, Yanfei
    Belusic, Danijel
    Smith-Miles, Kate
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (03) : 1090 - 1104
  • [3] EXTREMAL EVENT GRAPHS: A (STABLE) TOOL FOR ANALYZING NOISY TIME SERIES DATA
    Belton, Robin
    Cummins, Bree
    Gedeon, Tomas
    Fasy, Brittany Terese
    FOUNDATIONS OF DATA SCIENCE, 2023, 5 (01): : 81 - 151
  • [4] Detecting hidden transient events in noisy nonlinear time-series
    Montoya, A.
    Habtour, E.
    Moreu, F.
    CHAOS, 2022, 32 (07)
  • [5] Using the autocorrelation function to characterize time series of voltage measurements
    Witt, Thomas J.
    METROLOGIA, 2007, 44 (03) : 201 - 209
  • [6] Noisy time series prediction using independent component analysis
    Yang, Z.-M. (yangzhenmingtk@yahoo.com.cn), 1600, Northeast University (28):
  • [7] On the Computation of the Extremal Index for Time Series
    Caby, Th
    Faranda, D.
    Vaienti, S.
    Yiou, P.
    JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (5-6) : 1666 - 1697
  • [8] Clustering time series by extremal dependence
    Alonso, A. M.
    Gabirondo, P.
    Scotto, M. G.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [9] On the Computation of the Extremal Index for Time Series
    Th. Caby
    D. Faranda
    S. Vaienti
    P. Yiou
    Journal of Statistical Physics, 2020, 179 : 1666 - 1697
  • [10] Noisy extremal optimization
    Lung, Rodica Ioana
    Suciu, Mihai
    Gasko, Noemi
    SOFT COMPUTING, 2017, 21 (05) : 1253 - 1270