Area (or entropy) products in modified gravity and Kerr-MG/CFT correspondence

被引:0
|
作者
Parthapratim Pradhan
机构
[1] Hiralal Mazumdar Memorial College For Women,Department of Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We examine the thermodynamic features of inner and outer horizons of modified gravity (MOG) and its consequences on the holographic duality. We derive the thermodynamic product relations for this gravity. We consider both spherically symmetric solutions and axisymmetric solutions of MOG. We find that the area product formula for both cases is not mass-independent because they depend on the ADM mass parameter while, in Einstein gravity, this formula is mass-independent (universal). We also explicitly verify the first law, which is fulfilled at the inner horizon (IH) as well as at the outer horizon (OH). We derive thermodynamic products and sums for this kind of gravity. We further derive the Smarr-like mass formula for this kind of black hole (BH) in MOG. Moreover, we derive the area bound for both horizons. Furthermore, we show that the central charges of the left and right moving sectors are the same via universal thermodynamic relations. We also discuss the most important result of the Kerr-MOG/CFT correspondence. We derive the central charges for Kerr-MOG BH, which is cL=12J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{L}=12J$\end{document} and it is similar to Kerr BH. We also derive the dimensionless temperature for extreme Kerr-MOG BH which is TL=14πα+21+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{L} = \frac{1}{4\pi} \frac{\alpha+2}{\sqrt{1+\alpha}}$\end{document}, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} is a MOG parameter. This is actually the dual CFT temperature of the Frolov-Thorne thermal vacuum state. In the limit α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha = 0$\end{document}, we find the dimensionless temperature of a Kerr BH. Consequently, the Cardy formula gives us microscopic entropy for extreme Kerr-MOG BH, S micro =α+21+απJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\rm micro}=\frac{\alpha+2}{\sqrt{1+\alpha}} \pi J$\end{document}, for the CFT, which is completely in agreement with the macroscopic Bekenstein-Hawking entropy. Therefore we may conjecture that, in the extremal limit, the Kerr-MOG BH is holographically dual to a chiral 2D CFT with central charge cL=12J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c_{L}=12J$\end{document}. Finally, we derive the mass-independent area (or entropy) product relations for regular MOG BH.
引用
收藏
相关论文
共 9 条
  • [1] Area (or entropy) products in modified gravity and Kerr-MG/CFT correspondence
    Pradhan, Parthapratim
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05):
  • [2] Gravity waves from the Kerr/CFT correspondence
    Porfyriadis, Achilleas P.
    Strominger, Andrew
    PHYSICAL REVIEW D, 2014, 90 (04):
  • [3] Entropy of Kaluza-Klein black hole from Kerr/CFT correspondence
    Li, Ran
    Li, Ming-Fan
    Ren, Ji-Rong
    PHYSICS LETTERS B, 2010, 691 (05) : 249 - 253
  • [4] Kerr-Newman-NUT-Kiselev black holes in Rastall theory of gravity and Kerr/CFT correspondence
    Sakti, Muhammad F. A. R.
    Suroso, Agus
    Zen, Freddy P.
    ANNALS OF PHYSICS, 2020, 413
  • [5] R**2 correction to BMPV black hole entropy from Kerr/CFT correspondence
    Hayashi, Hirotaka
    Tai, Ta-Sheng
    PHYSICS LETTERS B, 2012, 710 (02) : 352 - 357
  • [6] Rotating black holes and exotic compact objects in the Kerr/CFT correspondence within Rastall gravity
    Sakti, Muhammad F. A. R.
    Suroso, Agus
    Sulaksono, Anto
    Zen, Freddy P.
    PHYSICS OF THE DARK UNIVERSE, 2022, 35
  • [7] Entropy as logarithmic term of the central charge and modified Friedmann equation in AdS/CFT correspondence
    Bousder, M.
    Salmani, E.
    Ez-Zahraouy, H.
    JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2023, 38 : 49 - 57
  • [8] Entropy spectrum and area spectrum of Kerr black hole in gravity's rianbow
    Cheng-Zhou, Liu
    Yue-Jun, Deng
    Ye-Cheng, Luo
    ACTA PHYSICA SINICA, 2018, 67 (06)
  • [9] Mass-independent area (or entropy) and thermodynamic volume products in conformal gravity
    Pradhan, Parthapratim
    MODERN PHYSICS LETTERS A, 2017, 32 (19)