Exact K-Monotonicity of One Class of Banach Pairs

被引:0
|
作者
S. V. Astashkin
机构
[1] Samara State University,
来源
关键词
Extreme Point; Lorentz Space; Proof Base; Banach Pair;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain necessary and sufficient conditions for exact K-monotonicity of Banach pairs which are constituted by the space of essentially bounded functions and an arbitrary Lorentz space. The proof bases on a description for the set of extreme points of K-orbits with respect to the corresponding finite-dimensional pairs.
引用
收藏
页码:5 / 21
页数:16
相关论文
共 50 条
  • [1] Exact K-monotonicity of one class of Banach pairs
    Astashkin, SV
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (01) : 5 - 21
  • [2] On the exact K-monotonicity of Banach couples
    Astashkin, SV
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (03) : 217 - 219
  • [3] On stability of K-monotonicity of Banach couples
    Astashkin, Sergey V.
    Tikhomirov, Konstantin E.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 113 - 137
  • [4] Density deconvolution under a k-monotonicity constraint
    Chew-Seng Chee
    Byungtae Seo
    [J]. Statistics and Computing, 2022, 32
  • [5] Density deconvolution under a k-monotonicity constraint
    Chee, Chew-Seng
    Seo, Byungtae
    [J]. STATISTICS AND COMPUTING, 2022, 32 (05)
  • [6] LINEAR APPROXIMATION METHOD PRESERVING k-MONOTONICITY
    Boytsov, D. I.
    Sidorov, S. P.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 21 - 27
  • [7] Some remarks on the barrier lemma and K-monotonicity
    Marek, I
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1995, 2 (05) : 431 - 445
  • [8] Relationships between K-monotonicity and rotundity properties with application
    Ciesielski, Maciej
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (01) : 235 - 258
  • [9] Strict K-monotonicity and K-order continuity in symmetric spaces
    Ciesielski, Maciej
    [J]. POSITIVITY, 2018, 22 (03) : 727 - 743
  • [10] Testing k-Monotonicity The Rise and Fall of Boolean Functions
    Canonne, Clement L.
    Grigorescu, Elena
    Guo, Siyao
    Kumar, Akash
    Wimmer, Karl
    [J]. THEORY OF COMPUTING, 2019, 15 (01) : 1 - 55