The structure of semiclassical asymptotic expansions of antisymmetric solutions of the stationary Schrödinger equation

被引:0
|
作者
A. É. Ruuge
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2000年 / 67卷
关键词
many-particle Schrödinger equation; fermion; ground state; semiclassical asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the semiclassical asymptotics of eigenfunctions for the Hamiltonian of a quantum-mechanical system ofN identical fermions withd degrees of freedom without spin interaction. In the one-dimensional case (d=1), examples are known in which the ground antisymmetric state in the semiclassical limit is the product ofN(N−1)/2 two-particle wave functions. We construct a nontrivial generalization of this property ford>1.
引用
收藏
页码:207 / 217
页数:10
相关论文
共 50 条
  • [1] The structure of semiclassical asymptotic expansions of antisymmetric solutions of the stationary Schrodinger equation
    Ruuge, AE
    MATHEMATICAL NOTES, 2000, 67 (1-2) : 207 - 217
  • [2] Semiclassical Asymptotic Expansions for Functions of the Bochner–Schrödinger Operator
    Y. A. Kordyukov
    Russian Journal of Mathematical Physics, 2023, 30 : 192 - 208
  • [3] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [4] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [5] Concentration behaviors of nodal solutions for a semiclassical Schrödinger equation
    Liu, Jiaquan
    Wang, Zhi-Qiang
    Zhao, Fukun
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [6] Asymptotic value distribution for solutions of the Schrödinger equation
    Breimesser S.V.
    Pearson D.B.
    Mathematical Physics, Analysis and Geometry, 2000, 3 (4) : 385 - 403
  • [7] Unbounded Solutions of the Stationary Schrödinger Equation on Riemannian Manifolds
    Alexander G. Losev
    Elena A. Mazepa
    Victoriya Y. Chebanenko
    Computational Methods and Function Theory, 2004, 3 (2) : 443 - 451
  • [8] Stationary solutions for nonlinear dispersive Schrödinger’s equation
    Anjan Biswas
    Chaudry Masood Khalique
    Nonlinear Dynamics, 2011, 63 : 623 - 626
  • [9] Effective Approximation for the Semiclassical Schrödinger Equation
    Philipp Bader
    Arieh Iserles
    Karolina Kropielnicka
    Pranav Singh
    Foundations of Computational Mathematics, 2014, 14 : 689 - 720
  • [10] Asymptotic Expansion of Solutions of an Elliptic Equation Related to the Nonlinear Schrödinger Equation
    M. Franca
    R. Johnson
    Journal of Dynamics and Differential Equations, 2003, 15 (2-3) : 535 - 551