Decomposition Method for a Class of Monotone Variational Inequality Problems

被引:0
|
作者
B. S. He
L. Z. Liao
H. Yang
机构
[1] Nanjing University,Department of Mathematics
[2] Hong Kong Baptist University,Department of Mathematics
[3] Hong Kong University of Science and Technology,Department of Civil Engineering
[4] Clear Water Bay,undefined
关键词
Monotone variational inequalities; decomposition methods; convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In the solution of the monotone variational inequality problem VI(Ω, F), with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u = \left[ {\begin{array}{*{20}c} x \\ y \\ \end{array} } \right],Fu = \left[ {\begin{array}{*{20}c} {fx - ATy} \\ {Ax - b} \\ \end{array} } \right],\Omega = \mathcal{X} \times \mathcal{Y},$$ \end{document} the augmented Lagrangian method (a decomposition method) is advantageous and effective when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{X} = \mathcal{R}^m$$ \end{document}. For some problems of interest, where both the constraint sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{X}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{Y}$$ \end{document} are proper subsets in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}^n$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}^m$$ \end{document}, the original augmented Lagrangian method is no longer applicable. For this class of variational inequality problems, we introduce a decomposition method and prove its convergence. Promising numerical results are presented, indicating the effectiveness of the proposed method.
引用
收藏
页码:603 / 622
页数:19
相关论文
共 50 条