Centralizing traces with automorphisms on triangular algebras

被引:0
|
作者
A. Fošner
X.-F. Liang
F. Wei
机构
[1] University of Primorska,Faculty of Management
[2] Beijing Institute of Technology,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2018年 / 154卷
关键词
-centralizing traces; -commuting trace; proper form; triangular algebra; 16R60; 16W10; 15A78;
D O I
暂无
中图分类号
学科分类号
摘要
Let T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document} be a triangular algebra over a commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document}, ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi}$$\end{document} be an automorphism of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document} and Zξ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{Z}_{\xi}(\mathcal{T})}$$\end{document} be the ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi}$$\end{document}-center of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document}. Suppose that q:T×T⟶T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{q} \colon \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T}}$$\end{document} is an R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document}-bilinear mapping and that Tq:T⟶T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{T}_{\mathfrak{q}} \colon \mathcal{T} \longrightarrow \mathcal{T}}$$\end{document} is a trace of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{q}}$$\end{document}. The aim of this article is to describe the form of Tq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{T}_{\mathfrak{q}}}$$\end{document} satisfying the commuting condition [Tq(x),x]ξ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}=0}$$\end{document} (resp. the centralizing condition [Tq(x),x]ξ∈Zξ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi} \in \mathcal{Z}_\xi(\mathcal{T})}$$\end{document}) for all x∈T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\in \mathcal{T}}$$\end{document}. More precisely, we will consider the question of when Tq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{T}_{\mathfrak{q}}}$$\end{document} satisfying the previous condition has the so-called proper form.
引用
收藏
页码:315 / 342
页数:27
相关论文
共 50 条
  • [1] Centralizing traces with automorphisms on triangular algebras
    Fosner, A.
    Liang, X-F.
    Wei, F.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (02) : 315 - 342
  • [2] Centralizing traces and Lie triple isomorphisms on triangular algebras
    Xiao, Zhankui
    Wei, Feng
    Fosner, Ajda
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1309 - 1331
  • [3] Notes on centralizing traces and Lie triple isomorphisms on triangular algebras
    Wang, Yu
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05): : 863 - 869
  • [4] Commuting (centralizing) traces and Lie (triple) isomorphisms on triangular algebras revisited
    Wang, Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 488 : 45 - 70
  • [5] Jordan automorphisms of triangular algebras II
    Hadj Ahmed, Driss Aiat
    Tribak, Rachid
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (03): : 265 - 268
  • [6] Double centralizing automorphisms on prime, semiprime rings and Banach algebras
    Hermas, Abderrahman
    Oukhtite, Lahcen
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [7] Centralizing traces and Lie triple isomorphisms on generalized matrix algebras
    Liang, Xinfeng
    Wei, Feng
    Xiao, Zhankui
    Fosner, Ajda
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (09): : 1786 - 1816
  • [8] Automorphisms and Dilation Theory of Triangular UHF Algebras
    Christopher Ramsey
    Integral Equations and Operator Theory, 2013, 77 : 89 - 105
  • [9] Automorphisms, σ-Biderivations and σ-Commuting Maps of Triangular Algebras
    Gonzalez, Candido Martin
    Repka, Joe
    Sanchez-Ortega, Juana
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [10] Automorphisms and Dilation Theory of Triangular UHF Algebras
    Ramsey, Christopher
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 77 (01) : 89 - 105