Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach

被引:0
|
作者
Saeed Kayhanian
Adam M. H. Young
Chaitanya Mangla
Ibrahim Jalloh
Helen M. Fernandes
Matthew R. Garnett
Peter J. Hutchinson
Shruti Agrawal
机构
[1] University of Cambridge,Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke’s Hospital
[2] University of Cambridge,Fitzwilliam College
[3] University of Cambridge,Department of Computer Science and Technology
[4] University of Cambridge,Department of Paediatric Intensive Care, Addenbrooke’s Hospital
来源
Pediatric Research | 2019年 / 86卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:641 / 645
页数:4
相关论文
共 50 条
  • [1] Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach
    Kayhanian, Saeed
    Young, Adam M. H.
    Mangla, Chaitanya
    Jalloh, Ibrahim
    Fernandes, Helen M.
    Garnett, Matthew R.
    Hutchinson, Peter J.
    Agrawal, Shruti
    PEDIATRIC RESEARCH, 2019, 86 (05) : 641 - 645
  • [2] Correction: Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach
    Saeed Kayhanian
    Adam M. H. Young
    Chaitanya Mangla
    Ibrahim Jalloh
    Helen M. Fernandes
    Matthew R. Garnett
    Peter J. Hutchinson
    Shruti Agrawal
    Pediatric Research, 2019, 86 : 675 - 675
  • [3] A Machine-Learning Approach to Predicting Smoking Cessation Treatment Outcomes
    Coughlin, Lara N.
    Tegge, Allison N.
    Sheffer, Christine E.
    Bickel, Warren K.
    NICOTINE & TOBACCO RESEARCH, 2020, 22 (03) : 415 - 422
  • [4] Rapid Prediction of Brain Injury Pattern in mTBI by Combining FE Analysis With a Machine-Learning Based Approach
    Shim, Vickie B.
    Holdsworth, Samantha
    Champagne, Allen A.
    Coverdale, Nicole S.
    Cook, Douglas J.
    Lee, Tae-Rin
    Wang, Alan D.
    Li, Shaofan
    Fernandez, Justin W.
    IEEE ACCESS, 2020, 8 (179457-179465) : 179457 - 179465
  • [5] A supervised machine-learning approach towards geochemical predictive modelling in archaeology
    Oonk, Stijn
    Spijker, Job
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2015, 59 : 80 - 88
  • [6] MACHINE LEARNING-BASED PREDICTION OF FOUR TYPES OF OUTCOMES AFTER TRAUMATIC BRAIN INJURY USING DATA AT ADMISSION: A MULTICENTER STUDY
    Matsuo, Kazuya
    Aihara, Hideo
    Hara, Yoshie
    Morishita, Akitsugu
    Sakagami, Yoshio
    Miyake, Shigeru
    Tatsumi, Shotaro
    Ishihara, Satoshi
    Tohma, Yoshiki
    Yamashita, Haruo
    Sasayama, Takashi
    JOURNAL OF NEUROTRAUMA, 2023, 40 (15-16) : A47 - A48
  • [7] Early predictive values of clinical assessments for ARDS mortality: a machine-learning approach
    Ding, Ning
    Nath, Tanmay
    Damarla, Mahendra
    Gao, Li
    Hassoun, Paul M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] A model for predicting 7-day pressure injury outcomes in paediatric patients: A machine learning approach
    Chun, Xiao
    Pan, Liyan
    Lin, Yan
    Ye, Liyan
    Liang, Huiying
    Tao, Jianping
    Luo, Yi
    JOURNAL OF ADVANCED NURSING, 2021, 77 (03) : 1304 - 1314
  • [9] Modelling early recovery patterns after paediatric traumatic brain injury
    Forsyth, Rob J.
    Salorio, Cynthia F.
    Christensen, James R.
    ARCHIVES OF DISEASE IN CHILDHOOD, 2010, 95 (04) : 266 - 270
  • [10] Predicting key educational outcomes in academic trajectories: a machine-learning approach
    Mariel F. Musso
    Carlos Felipe Rodríguez Hernández
    Eduardo C. Cascallar
    Higher Education, 2020, 80 : 875 - 894