Regularity of powers of bipartite graphs

被引:0
|
作者
A. V. Jayanthan
N. Narayanan
S. Selvaraja
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Bipartite graphs; Castelnuovo–Mumford regularity; Induced matching number; Co-chordal cover number; Edge ideal;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 1$$\end{document}, we obtain upper bounds for reg(I(G)s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {reg}}(I(G)^s)$$\end{document} for bipartite graphs. We then compare the properties of G and G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document}, where G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document} is the graph associated with the polarization of the ideal (I(G)s+1:e1⋯es)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I(G)^{s+1} : e_1\cdots e_s)$$\end{document}, where e1,⋯,es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1,\cdots , e_s$$\end{document} are edges of G. Using these results, we explicitly compute reg(I(G)s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {reg}}(I(G)^s)$$\end{document} for several subclasses of bipartite graphs.
引用
收藏
页码:17 / 38
页数:21
相关论文
共 50 条
  • [1] REGULARITY OF POWERS OF BIPARTITE GRAPHS
    Kumar, Ajay
    Kumar, Rajiv
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (01) : 1 - 9
  • [2] Regularity of powers of bipartite graphs
    Jayanthan, A. V.
    Narayanan, N.
    Selvaraja, S.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 47 (01) : 17 - 38
  • [3] Regularity of powers of cover ideals of bipartite graphs
    Hang, Nguyen Thu
    Hien, Truong Thi
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2023, 33 (02) : 317 - 335
  • [4] POWERS OF EDGE IDEALS OF REGULARITY THREE BIPARTITE GRAPHS
    Alilooee, Ali
    Banerjee, Arindam
    JOURNAL OF COMMUTATIVE ALGEBRA, 2017, 9 (04) : 441 - 454
  • [5] Regularity of bicyclic graphs and their powers
    Cid-Ruiz, Yairon
    Jafari, Sepehr
    Nemati, Navid
    Picone, Beatrice
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [6] REGULARITY OF SYMBOLIC POWERS OF CERTAIN GRAPHS
    Chakraborty, Bidwan
    Mandal, Mousumi
    arXiv, 2022,
  • [7] Algebraic characterizations of regularity properties in bipartite graphs
    Abiad, Aida
    Dalfo, Cristina
    Angel Fiol, Miquel
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1223 - 1231
  • [8] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Zhou, Bo
    Ilic, Aleksandar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1161 - 1169
  • [9] Bipartite Powers of k-chordal Graphs
    Chandran, L. Sunil
    Mathew, Rogers
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (02): : 49 - 58
  • [10] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Bo Zhou
    Aleksandar Ilić
    Czechoslovak Mathematical Journal, 2010, 60 : 1161 - 1169