In this paper we prove an existence result of multiple positive solutions for the following system {-Delta u=2 alpha & varepsilon;/alpha & varepsilon;+beta & varepsilon;|u|(alpha & varepsilon;-2)u|v|(beta & varepsilon;) in Omega, -Delta v=2 beta & varepsilon;/alpha & varepsilon;+beta & varepsilon;|u|(alpha & varepsilon;)|v|(beta & varepsilon;-2)v in Omega, u=v=0 on partial derivative Omega, where Omega is a smooth and bounded domain in RN, N >= 3, alpha & varepsilon;=alpha-& varepsilon;/2, beta & varepsilon;=beta-& varepsilon;/2, alpha,beta>1 and alpha+beta=2(& lowast;), where 2(& lowast;)=2N/N-2. More specifically, we prove that, for & varepsilon;>0 small, the number of positive solutions is estimated below by topological invariants of the domain Omega: the Ljusternick-Schnirelmann category.