Fe–Mg and Fe–Mn interdiffusion in ilmenite with implications for geospeedometry using oxides

被引:0
|
作者
Kelsey B. Prissel
Michael J. Krawczynski
James A. Van Orman
机构
[1] Washington University in St. Louis,Department of Earth and Planetary Sciences
[2] Case Western Reserve University,Department of Earth, Environmental, and Planetary Sciences
关键词
Ilmenite; Diffusion; Oxide geothermometry; Kimberlites;
D O I
暂无
中图分类号
学科分类号
摘要
The Fe–Mg and Fe–Mn interdiffusion coefficients for ilmenite have been determined as a function of temperature and crystallographic orientation. Diffusion annealing experiments were conducted at 1.5 GPa between 800 and 1100 ∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }\hbox {C}$$\end{document}. For Fe–Mg interdiffusion, each diffusion couple consisted of an ilmenite polycrystal and an oriented single crystal of geikielite. The activation energy (Q) and pre-exponential factor (D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_0$$\end{document}) for Fe–Mg diffusion in the ilmenite polycrystal were found to be Q = 188±15kJmol-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$188 \pm 15\hbox { kJ mol}^{-1}$$\end{document} and logD0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {log}} D_0$$\end{document} = -6.0±0.6m2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-6.0 \pm 0.6\hbox { m}^2\hbox { s}^{-1}$$\end{document}. For the geikielite single crystal, Fe–Mg interdiffusion has Q=220±16kJmol-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q = 220 \pm 16\hbox { kJ mol}^{-1}$$\end{document} and logD0=-4.6±0.7m2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {log}} D_0 = -4.6 \pm 0.7\hbox { m}^2\hbox { s}^{-1}$$\end{document}. Our results indicate that crystallographic orientation did not significantly affect diffusion rates. For Fe–Mn interdiffusion, each diffusion couple consisted of one ilmenite polycrystal and one Mn-bearing ilmenite polycrystal. For Fe–Mn interdiffusion, Q = 264±30kJmol-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$264 \pm 30\hbox { kJ mol}^{-1}$$\end{document} and logD0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {log}} D_0$$\end{document} = -2.9±1.3m2s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2.9 \pm 1.3\hbox { m}^2\hbox { s}^{-1}$$\end{document} in the ilmenite. We did not find a significant concentration dependence for the Fe–Mg and Fe–Mn interdiffusion coefficients. In comparing our experimental results for cation diffusion in ilmenite with those previously reported for hematite, we have determined that cation diffusion is faster in ilmenite than in hematite at temperatures <1100 ∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }\hbox {C}$$\end{document}. At oxygen fugacities near the wüstite–magnetite buffer, Fe and Mn diffusion rates are similar for ilmenite and titanomagnetite. We apply these experimentally determined cation diffusion rates to disequilibrium observed in ilmenites from natural volcanic samples to estimate the time between perturbation and eruption for the Bishop Tuff, Fish Canyon Tuff, Mt. Unzen, Mt. St. Helens, and kimberlites. When integrated with natural observations of chemically zoned ilmenite and constraints on pre-eruptive temperature and grain size, our experimentally determined diffusivities for ilmenite can be used to estimate a minimum time between magmatic perturbation and eruption on the timescale of hours to months.
引用
收藏
相关论文
共 50 条
  • [1] Fe-Mg and Fe-Mn interdiffusion in ilmenite with implications for geospeedometry using oxides
    Prissel, Kelsey B.
    Krawczynski, Michael J.
    Van Orman, James A.
    [J]. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2020, 175 (07)
  • [2] Fe–Mg Interdiffusion in (Mg,Fe)O
    Stephen Mackwell
    Misha Bystricky
    Caroline Sproni
    [J]. Physics and Chemistry of Minerals, 2005, 32 : 418 - 425
  • [3] Average interdiffusion of (Fe,Mn)-Mg in natural diopside
    Dimanov, A
    Sautter, V
    [J]. EUROPEAN JOURNAL OF MINERALOGY, 2000, 12 (04) : 749 - 760
  • [4] Fe-Mg interdiffusion in (Mg,Fe)O
    Mackwell, S
    Bystricky, M
    Sproni, C
    [J]. PHYSICS AND CHEMISTRY OF MINERALS, 2005, 32 (5-6) : 418 - 425
  • [5] Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers
    T. Müller
    R. Dohmen
    H. W. Becker
    Jan H. ter Heege
    S. Chakraborty
    [J]. Contributions to Mineralogy and Petrology, 2013, 166 : 1563 - 1576
  • [6] Influence of hydrogen on Fe–Mg interdiffusion in (Mg,Fe)O and implications for Earth’s lower mantle
    Sylvie Demouchy
    Stephen J. Mackwell
    David L. Kohlstedt
    [J]. Contributions to Mineralogy and Petrology, 2007, 154 : 279 - 289
  • [7] Influence of hydrogen on Fe-Mg interdiffusion in (Mg,Fe)O and implications for Earth's lower mantle
    Demouchy, Sylvie
    Mackwell, Stephen J.
    Kohlstedt, David L.
    [J]. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2007, 154 (03) : 279 - 289
  • [8] Fe-Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe-Mg exchange geothermometers
    Mueller, T.
    Dohmen, R.
    Becker, H. W.
    ter Heege, Jan H.
    Chakraborty, S.
    [J]. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2013, 166 (06) : 1563 - 1576
  • [9] INTERNALLY CONSISTENT SOLUTION MODELS FOR FE-MG-MN-TI OXIDES - FE-MG-TI OXIDES AND OLIVINE
    ANDERSEN, DJ
    BISHOP, FC
    LINDSLEY, DH
    [J]. AMERICAN MINERALOGIST, 1991, 76 (3-4) : 427 - 444
  • [10] Fe-Mg interdiffusion in orthopyroxene
    Dohmen, Ralf
    Ter Heege, Jan H.
    Becker, Hans-Werner
    Chakraborty, Sumit
    [J]. AMERICAN MINERALOGIST, 2016, 101 (9-10) : 2210 - 2221