Asymptotically linear fractional p-Laplacian equations

被引:0
|
作者
Rossella Bartolo
Giovanni Molica Bisci
机构
[1] Politecnico di Bari,Dipartimento di Meccanica, Matematica e Management
[2] Università ‘Mediterranea’ di Reggio Calabria,Dipartimento PAU
关键词
Fractional ; -Laplacian; Integro-differential operator; Variational methods; Asymptotically linear problem; Resonant problem; Pseudo-genus; Primary 49J35; 35A15; 35S15; 58E05; Secondary 47G20; 45G05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the multiplicity of weak solutions to (possibly resonant) nonlocal equations involving the fractional p-Laplacian operator. More precisely, we consider a Dirichlet problem driven by the fractional p-Laplacian operator and involving a subcritical nonlinear term which does not satisfy the technical Ambrosetti–Rabinowitz condition. By framing this problem in an appropriate variational setting, we prove a multiplicity theorem.
引用
收藏
页码:427 / 442
页数:15
相关论文
共 50 条
  • [1] Asymptotically linear fractional p-Laplacian equations
    Bartolo, Rossella
    Bisci, Giovanni Molica
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 427 - 442
  • [2] Existence of solutions for asymptotically 'linear' p-Laplacian equations
    Liu, S
    Li, S
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 81 - 87
  • [3] Existence of Solutions for Asymptotically Periodic Fractional p-Laplacian Equations
    He, Shuwen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (02): : 329 - 342
  • [4] Asymptotically linear Dirichlet problem for the p-Laplacian
    Li, GB
    Zhou, HS
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (08) : 1043 - 1055
  • [5] On Fractional p-Laplacian Equations at Resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1273 - 1288
  • [6] On Fractional p-Laplacian Equations at Resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1273 - 1288
  • [7] Fractional p-Laplacian evolution equations
    Mazon, Jose M.
    Rossi, Julio D.
    Toledo, Julian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (06): : 810 - 844
  • [8] On an asymptotically p-linear p-Laplacian equation in RN
    Liu, Jiaquan
    Liu, Xiangqing
    Guo, Yuxia
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) : 676 - 688
  • [9] Existence of three nontrivial solutions for asymptotically p-linear noncoercive p-Laplacian equations
    Papageorgiou, Nikolaos S.
    Rocha, Eugenio M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5314 - 5326
  • [10] Multiplicity for fractional differential equations with p-Laplacian
    Tian, Yuansheng
    Wei, Yongfang
    Sun, Sujing
    [J]. BOUNDARY VALUE PROBLEMS, 2018,