Large deviations of the steady-state distribution of reflected processes with applications to queueing systems

被引:0
|
作者
Kurt Majewski
机构
[1] Siemens Corp. Research and Development,
来源
Queueing Systems | 1998年 / 29卷
关键词
large deviations; Skorohod map; path space minimization problem; generalized processor sharing; heavy traffic approximation; minimizing path;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Skorohod map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document} which takes paths in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^n$$ \end{document} to paths which stay in the positive orthant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}_{^ + }^n$$ \end{document}. We let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document} be the domain of definition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}. A convex and lower semi-continuous function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\lambda {\text{:}}\mathbb{R}^n \to \left[ {0,\infty } \right]$$ \end{document} and a set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A \subset \mathbb{R}_{^ + }^n$$ \end{document} are given. We are concerned with the calculation of the infimum of the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\int_0^t \lambda \left( {{\dot \omega }\left( {\mathcal{S}} \right)} \right){d}\mathcal{S}$$ \end{document} for t ⩾ 0 and absolutely continuous \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\omega } \in \mathcal{S}$$ \end{document} subject to the conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\omega }\left( {0} \right){ = 0}$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R\left( \omega \right)\left( t \right) \in A$$ \end{document}. We show that such minimization problems characterize large deviation asymptotics of tail probabilities of the steady-state distribution of certain reflected processes. We approximate the infimum by a sequence of finite-dimensional minimization problems. This approximation allows to formulate an algorithm for the calculation of the infimum and to derive analytical bounds for its value. Several applications are discussed including large deviations of generalized processor sharing and large deviations of heavily loaded queueing networks.
引用
收藏
页码:351 / 381
页数:30
相关论文
共 50 条