Time-Dependent Wave Equations on Graded Groups

被引:0
|
作者
Michael Ruzhansky
Chiara Alba Taranto
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
[3] Imperial College London,Department of Mathematics
来源
关键词
Sub-Laplacian; Rockland operator; Gevrey spaces; Wave equation; Heisenberg group; Graded groups; 35L05; 35L30; 43A70; 42A80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the wave equations for hypoelliptic homogeneous left-invariant operators on graded Lie groups with time-dependent Hölder (or more regular) non-negative propagation speeds. The examples are the time-dependent wave equation for the sub-Laplacian on the Heisenberg group or on general stratified Lie groups, or p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-evolution equations for higher order operators on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathbb{R}}}^{n}$\end{document} or on groups, already in all these cases our results being new. We establish sharp well-posedness results in the spirit of the classical result by Colombini, De Giorgi and Spagnolo. In particular, we describe an interesting local loss of regularity phenomenon depending on the step of the group (for stratified groups) and on the order of the considered operator.
引用
收藏
相关论文
共 50 条
  • [1] Time-Dependent Wave Equations on Graded Groups
    Ruzhansky, Michael
    Taranto, Chiara Alba
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [2] Time-dependent global attractors for strongly damped wave equations with time-dependent memory kernels
    Nguyen Duong Toan
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (03): : 466 - 492
  • [3] On the Cauchy problem for wave equations with time-dependent coefficients
    Kinoshita, Tamotu
    Yagdjian, Karen
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2008, 13 (S08): : 1 - 20
  • [4] DYNAMICS FOR THE DAMPED WAVE EQUATIONS ON TIME-DEPENDENT DOMAINS
    Zhou, Feng
    Sun, Chunyou
    Li, Xin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04): : 1645 - 1674
  • [5] Graded Symmetry Algebras of Time-Dependent Evolution Equations and Application to the Modified KP Equations
    Ma W.-X.
    Bullough R.K.
    Caudrey P.J.
    [J]. Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 293 - 309
  • [6] NONLINEAR-WAVE EQUATIONS WITH TIME-DEPENDENT PRINCIPAL PART
    VOGELSANG, V
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1976, 149 (03) : 249 - 260
  • [7] Time-dependent equations for wave propagation on rapidly varying topography
    Suh, KD
    Lee, C
    Park, WS
    [J]. COASTAL ENGINEERING, 1997, 32 (2-3) : 91 - 117
  • [8] SCATTERING PROPERTIES OF WAVE-EQUATIONS WITH TIME-DEPENDENT POTENTIALS
    MENZALA, GP
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (4-5): : 457 - 475
  • [9] On Carleman and observability estimates for wave equations on time-dependent domains
    Shao, Arick
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (04) : 998 - 1064
  • [10] NUMERICAL UPSCALING FOR WAVE EQUATIONS WITH TIME-DEPENDENT MULTISCALE COEFFICIENTS*
    Maier, Bernhard
    Verfuerth, Barbara
    [J]. MULTISCALE MODELING & SIMULATION, 2022, 20 (04): : 1169 - 1190