Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions

被引:0
|
作者
Siegfried Carl
Dumitru Motreanu
机构
[1] Martin-Luther-Universität,Institut für Mathematik
[2] Université de Perpignan,Département de Mathématiques
来源
关键词
Quasilinear elliptic system; Pseudomonotone operator ; Trapping region; Enclosure and comparison principle; Minimal and maximal solution; 35J57; 35J92; 35B50; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet boundary value problem for quasilinear elliptic systems in a bounded domain Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document} with a diagonal (p1,p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p_1, p_2)$$\end{document}-Laplacian as leading differential operator of the form -Δpiui=fi(x,u1,u2,∇u1,∇u2)inΩ,ui=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta _{p_i} u_i=f_i(x, u_1,u_2,\nabla u_1,\nabla u_2)\ \ \text {in }\Omega ,\ \ u_i=0\ \ \text {on }\partial \Omega , \end{aligned}$$\end{document}where the component functions fi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i$$\end{document} (i=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document}) of the lower order vector field may also depend on the gradient of the solution u=(u1,u2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=(u_1,u_2)$$\end{document}. The main goal of this paper is twofold. First, we establish an enclosure and existence result by means of the trapping region which is formed by pairs of appropriately defined sub-supersolutions. Second, by a suitable construction of sequences of expanding trapping regions we are able to prove the existence of extremal positive and negative solutions of the system. The theory of pseudomonotone operators, regularity results due to Cianchi-Maz’ya, as well as a strong maximum principle due to Pucci-Serrin are essential tools in the proofs.
引用
收藏
页码:801 / 821
页数:20
相关论文
共 50 条
  • [1] Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions
    Carl, Siegfried
    Motreanu, Dumitru
    [J]. MONATSHEFTE FUR MATHEMATIK, 2017, 182 (04): : 801 - 821
  • [2] Multiple Solutions for Nonvariational Quasilinear Elliptic Systems
    Motreanu, Dumitru
    Moussaoui, Abdelkrim
    Pereira, Denilson S.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [3] Multiple Solutions for Nonvariational Quasilinear Elliptic Systems
    Dumitru Motreanu
    Abdelkrim Moussaoui
    Denilson S. Pereira
    [J]. Mediterranean Journal of Mathematics, 2018, 15
  • [4] EXISTENCE AND UNIQUENESS RESULTS OF POSITIVE SOLUTIONS FOR NONVARIATIONAL QUASILINEAR ELLIPTIC SYSTEMS
    Kandilakis, Dimitrios A.
    Sidiropoulos, Nikolaos E.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [5] Existence of positive solutions for a nonvariational quasilinear elliptic system
    Clément, P
    Fleckinger, J
    Mitidieri, E
    de Thélin, F
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) : 455 - 477
  • [6] Multiple solutions for elliptic systems via trapping regions and related nonsmooth potentials
    Carl, Siegfried
    Motreanu, Dumitru
    [J]. APPLICABLE ANALYSIS, 2015, 94 (08) : 1594 - 1613
  • [7] Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method
    Francisco Julio S. A. Corrêa
    Gelson C. G. dos Santos
    Leandro S. Tavares
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [8] Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method
    Correa, Francisco Julio S. A.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [9] Nonvariational elliptic systems via Galerkin methods
    Alves, CO
    de Figueiredo, DG
    [J]. FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, 2003, : 47 - 57
  • [10] Existence of positive solutions for nonlocal and nonvariational elliptic systems
    Chen, YJ
    Gao, HJ
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 72 (02) : 271 - 281