A new approach for the numerical solution for nonlinear Klein–Gordon equation

被引:0
|
作者
Kumbinarasaiah S. [1 ]
机构
[1] Department of Mathematics, Bangalore University, Bangalore
关键词
Clique polynomials; Collocation method; Operational matrix; Partial differential equations;
D O I
10.1007/s40324-020-00225-y
中图分类号
学科分类号
摘要
In this article, we generated a new operational matrix of integration using Clique polynomials of complete graphs and also introducing a new numerical technique to solve nonlinear Klein–Gordon equation. These equations describe a variety of physical phenomena such as ferroelectric and ferromagnetic domain walls, and DNA dynamics. We obtain an approximate solution for the nonlinear Klein–Gordon equation using the present method by transforming a system of nonlinear algebraic equations. The proposed scheme is applied to some examples and compared with another method in the literature that demonstrates the effectiveness of this method. © 2020, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:435 / 456
页数:21
相关论文
共 50 条
  • [1] A New Approach to Numerical Solution of Nonlinear Klein-Gordon Equation
    Bulbul, Berna
    Sezer, Mehmet
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [2] Numerical solution of the nonlinear Klein-Gordon equation
    Rashidinia, J.
    Ghasemi, M.
    Jalilian, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1866 - 1878
  • [3] Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation
    Rashidinia, J.
    Mohammadi, R.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) : 78 - 91
  • [4] A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation
    Khuri, S. A.
    Sayfy, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) : 1047 - 1056
  • [5] THE MESHLESS METHODS FOR NUMERICAL SOLUTION OF THE NONLINEAR KLEIN-GORDON EQUATION
    Rashidinia, J.
    Karmipour, Y.
    Nikan, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (02): : 436 - 447
  • [6] A New Perspective on The Numerical Solution for Fractional Klein Gordon Equation
    Karaagac, Berat
    Ucar, Yusuf
    Yagmurlu, N. Murat
    Esen, Alaattin
    [J]. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2019, 22 (02): : 443 - 451
  • [7] On the Numerical Solution of the Klein-Gordon Equation
    Bratsos, A. G.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 939 - 951
  • [8] Numerical Solution of Nonlinear Klein-Gordon Equation Using Polynomial Wavelets
    Rashidinia, Jalil
    Jokar, Mahmood
    [J]. INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 199 - 214
  • [9] A numerical study on the nonlinear fractional Klein–Gordon equation
    Mulimani M.
    Kumbinarasaiah S.
    [J]. Journal of Umm Al-Qura University for Applied Sciences, 2024, 10 (1): : 178 - 199
  • [10] Operational Solution to the Nonlinear Klein-Gordon Equation
    Bengochea, G.
    Verde-Star, L.
    Ortigueira, M.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (05) : 506 - 512