A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects

被引:0
|
作者
X. Blanc
C. Le Bris
P. -L. Lions
机构
[1] CEA,
[2] DAM,undefined
[3] DIF,undefined
[4] École Nationale des Ponts et Chaussées,undefined
[5] INRIA Rocquencourt,undefined
[6] MICMAC project-team,undefined
[7] Collége de France,undefined
[8] CEREMADE,undefined
[9] Université Paris Dauphine,undefined
来源
关键词
Periodic Function; Functional Space; Discretization Error; Periodic Case; Corrector Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a general strategy, adapted from classical homogenization theory, to approximate at the fine scale the solution to an elliptic equation with oscillatory coefficient when this coefficient is a locally perturbed periodic function. We illustrate numerically the efficiency of the approach. The setting considered is a particular case of a more general method which is developed in works in preparation [6].
引用
收藏
页码:351 / 367
页数:16
相关论文
共 50 条
  • [1] A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects
    Blanc, X.
    Le Bris, C.
    Lions, P. -L.
    [J]. MILAN JOURNAL OF MATHEMATICS, 2012, 80 (02) : 351 - 367
  • [2] HOMOGENIZATION AND NUMERICAL SIMULATION OF FLOW IN GEOMETRIES WITH TEXTILE MICROSTRUCTURES
    Griebel, M.
    Klitz, M.
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (04): : 1439 - 1460
  • [3] Homogenization Approach to Water Transport in Plant Tissues with Periodic Microstructures
    Chavarria-Krauser, A.
    Ptashnyk, M.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (04) : 80 - 111
  • [4] A substructure-based homogenization approach for systems with periodic microstructures of comparable sizes
    Chen, Yang
    Dong, Leiting
    Wang, Bing
    Chen, Yuli
    Qiu, Zhiping
    Guo, Zaoyang
    [J]. COMPOSITE STRUCTURES, 2017, 169 : 97 - 104
  • [5] Asymptotic homogenization of viscoelastic composites with periodic microstructures
    Yi, YM
    Park, SH
    Youn, SK
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (17) : 2039 - 2055
  • [6] Numerical investigation of necking in perforated sheets using the periodic homogenization approach
    Zhu, Jianchang
    Ben Bettaieb, Mohamed
    Abed-Meraim, Farid
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 166
  • [7] A PERIODIC HOMOGENIZATION PROBLEM WITH DEFECTS RARE AT INFINITY
    Goudey, Remi
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2022, 17 (04) : 547 - 592
  • [8] A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures
    Li, Quhao
    Chen, Wenjiong
    Liu, Shutian
    Wang, Jiaxing
    [J]. COMPOSITE STRUCTURES, 2019, 208 : 276 - 286
  • [9] A locally exact homogenization theory for periodic microstructures with isotropic phases
    Drago, Anthony S.
    Pindera, Marek-Jerzy
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2008, 75 (05):
  • [10] Limiting boundary correctors for periodic microstructures and inverse homogenization series
    Cakoni, Fioralba
    Moskow, Shari
    Pangburn, Tayler
    [J]. INVERSE PROBLEMS, 2020, 36 (06)