The boundary value problem of Poisson’s equation with Stokes’ boundary condition

被引:0
|
作者
Jinhai Yu
机构
[1] Zhengzhou Institute of Surveying and Mapping,
关键词
Poisson’s equation; ellipsoidal correction; spherical approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The following Poisson’s equation with the Stokes’ boundary condition is dealt with\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ \begin{gathered} \nabla ^2 T = - 4\pi Gp outside S, \hfill \\ \left. {\frac{{\partial T}}{{\partial h}} = \frac{1}{\gamma }\frac{{\partial y}}{{\partial h}}T} \right|_s = - \Delta g, \hfill \\ T = O\left( {r^{ - 3} } \right) at infinity, \hfill \\ \end{gathered} \right.$$ \end{document} whereS is reference ellipsord. Under spherical approximation transformation, the ellipsoidal correction terms about the boundary condition, the equation and the density in the above BVP are respectively given. Therefore, the disturbing potentialT can he obtained if the magnitudes aboveO(ε4) are neglected.
引用
收藏
页码:322 / 328
页数:6
相关论文
共 50 条