Brownian motion on random dynamical landscapes

被引:0
|
作者
Marc Suñé Simon
José María Sancho
Katja Lindenberg
机构
[1] Departament d’Estructura i Constituents de la Matèria,Department of Chemistry and Biochemistry and BioCircuits Institute
[2] Facultat de Física,undefined
[3] Universitat de Barcelona,undefined
[4] University of California San Diego,undefined
来源
关键词
Statistical and Nonlinear Physics;
D O I
暂无
中图分类号
学科分类号
摘要
We present a study of overdamped Brownian particles moving on a random landscape of dynamic and deformable obstacles (spatio-temporal disorder). The obstacles move randomly, assemble, and dissociate following their own dynamics. This landscape may account for a soft matter or liquid environment in which large obstacles, such as macromolecules and organelles in the cytoplasm of a living cell, or colloids or polymers in a liquid, move slowly leading to crowding effects. This representation also constitutes a novel approach to the macroscopic dynamics exhibited by active matter media. We present numerical results on the transport and diffusion properties of Brownian particles under this disorder biased by a constant external force. The landscape dynamics are characterized by a Gaussian spatio-temporal correlation, with fixed time and spatial scales, and controlled obstacle concentrations.
引用
收藏
相关论文
共 50 条
  • [1] Brownian motion on random dynamical landscapes
    Sune Simon, Marc
    Maria Sancho, Jose
    Lindenberg, Katja
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (03):
  • [2] DYNAMICAL STUDY OF BROWNIAN MOTION
    LEBOWITZ, JL
    RUBIN, E
    PHYSICAL REVIEW, 1963, 131 (06): : 2381 - +
  • [3] Random continuum and Brownian motion
    Kiss, Viktor
    Solecki, Slawomir
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (05) : 1376 - 1389
  • [4] RANDOM MOTION AND BROWNIAN ROTATION
    WYLLIE, G
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 61 (06): : 329 - 376
  • [5] Random walks and Brownian motion
    Castell, T
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1999, 18 (02): : 209 - 214
  • [6] Dynamical objectivity in quantum Brownian motion
    Tuziemski, J.
    Korbicz, J. K.
    EPL, 2015, 112 (04)
  • [7] RANDOM DYNAMICAL SYSTEMS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
    Garrido-Atienza, Maria J.
    Lu, Kening
    Schmalfuss, Bjoern
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02): : 473 - 493
  • [8] DYNAMICAL MODEL IN THE THEORY OF THE BROWNIAN MOTION
    MAGALINSKII, VB
    SOVIET PHYSICS JETP-USSR, 1959, 9 (06): : 1381 - 1382
  • [9] Brownian motion, dynamical randomness and irreversibility
    Gaspard, P
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [10] Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion
    Maslowski, B
    Schmalfuss, B
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (06) : 1577 - 1607